Exclusion of Organic Dye Using Neoteric Activated Carbon Prepared from Cornulaca monacantha Stem: Equilibrium and Thermodynamics Studies

Article Preview

Abstract:

In this study, Cornulaca monacantha stem (CMS) has been used for the preparation of highly competent, ecofriendly and low-cost activated carbon (CMSAC) biosorbent. It was characterized by some instrumental techniques such as Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The biosorbent was evaluated for the eradication of hazardous malachite green (MG) dye from aqueous solution. Batch experiments were conducted to assess the effect of various adsorption parameters such initial dye concentration, sorbent dosage, pH, agitation time and temperature. The results indicated that maximum sorption of MG was occurred at the pH ranged from 10.0 to 12.0. Langmuir, Freundlich and Tempkin isotherms were applied for the interpretation of experimental data and Langmuir model was found to be strongly fitted with higher R2 (0.999). The kinetics studies were examined using pseudo-first-order, pseudo-second-order, Elovich model. The sorption process was described by pseudo-second-order kinetics. The thermodynamic parameters such as energy change (ΔG°), enthalpychange (ΔH°) and entropy change (ΔS°) were found to be-6.21kJ/mol, 46.17 kJ/mol and 172.81 J/mol/K, respectively. The adsorption performance of malachite green dye onto gleaming activated carbon developed from Cornulaca monacantha stem was found to be spontaneous, feasible and endothermic process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-15

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Zaira, C. Chowdhury, S.M. Zain, R.A. Khan, A. Ahmed, Equilibrium Kinetics and Isotherm studies of cu (ii) adsorption from waste water onto alkali activated oil palm ash, Am. J. Appl. Sci. 8(3) (2011) 230-237.

DOI: 10.3844/ajassp.2011.230.237

Google Scholar

[2] A.P. Vieira, S.A. Santana, C.B. Bezerra, H.S. Silva, J.P. Chaves, J.P. de-Melo, Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp, J. Hazard. Mater. 166 (2009) 1272-1278.

DOI: 10.1016/j.jhazmat.2008.12.043

Google Scholar

[3] D. Pathania, S. Sharma, Effect of surfactants and electrolyte on removal and recovery of basic dye by using Ficus carica cellulosic fibers as biosorbent, Tenside Surfact. Det. 49(4) (2012) 306-314.

DOI: 10.3139/113.110196

Google Scholar

[4] V.K. Gupta, D. Pathania, S. Agarwal, S. Sharma, Amputation of congo red dye from waste water using microwave induced grafted Luffa cylindrica cellulosic fiber, Carbohydr. Polym. 111 (2014) 556-566.

DOI: 10.1016/j.carbpol.2014.04.032

Google Scholar

[5] D. Pathania, R. Katwal, G. Sharma, M. Naushad, M. R. Khan, A. H. Al-Muhtaseb, Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. Inter. J. Bio. Macro. 87(2016) 366-374.

DOI: 10.1016/j.ijbiomac.2016.02.073

Google Scholar

[6] A.F. Hassan, A.M. Abdel-Mohsen, M.M.G. Fouda, Comparative study of calcium alginate, activated carbon and their composite beads on methylene blue adsorption, Carbohydr. Polym. 102 (2014) 192-198.

DOI: 10.1016/j.carbpol.2013.10.104

Google Scholar

[7] S. Hajati, M. Ghaedi, F. Karimi, B. Barazesh, R.D.A. Sahraei, Competitive adsorption of Direct Yellow 12 and Reactive Orange 12 on ZnS: Mn nanoparticles loaded on activated carbon as novel adsorbent, J. Ind. Eng. Chem. 20 (2014) 564–571.

DOI: 10.1016/j.jiec.2013.05.015

Google Scholar

[8] M. Naushad, ZA. ALOthman, G Sharma, Inamuddin, Kinetics, isotherm and thermodynamic investigations for the adsorption of Co(II) ion onto crystal violet modified amberlite IR-120 resin, Ionics 21 (2015) 1453-1459.

DOI: 10.1007/s11581-014-1292-z

Google Scholar

[9] R. Katwal, H. Kaur, G. Sharma, M. Naushad, D. Pathania, Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity, J. Ind. Eng. Chem. 31(2015)173-184.

DOI: 10.1016/j.jiec.2015.06.021

Google Scholar

[10] V.K. Gupta, G. Sharma, D. Pathania, N.C. Kothiyal, Nanocomposite pectin Zr (IV) selenotungstophosphate for adsorptional/photocatalytic remediation of methylene blue and malachite green dyes from aqueous system, J. Ind. Eng. Chem. 21(2015).

DOI: 10.1016/j.jiec.2014.05.001

Google Scholar

[11] M.M. Hanafiah, W.W. Ngah, S.H. Zolkafly, L.C. Teong, M.Z.A., Acid Blue 25 adsorption on base treated Shoreadasyphylla sawdust: Kinetic, isotherm, thermodynamic and spectroscopic analysis, J. Environ. Sci. 24 (2012) 261-268.

DOI: 10.1016/s1001-0742(11)60764-x

Google Scholar

[12] F.J. Foster, L. Woodbury, The use of malachite green as a fish fungicide and anticeptic, Prog. Fish-Cult. 18 (1936) 7-9.

Google Scholar

[13] S.J. Culp, L.R. Blankenship, D.F. Kusewitt, D.R. Doerge, L.T. Mulligan, F.A. Beland, Toxicity and metabolism of malachite green and leucomalachite green during short-term feeding to Fischer 344 rats and B6C3F1 mice, Chem. Biol. Interact. 122 (3) (1999).

DOI: 10.1016/s0009-2797(99)00119-2

Google Scholar

[14] S.J. Culp, F.A. Beland, Malachite green: a toxicological review, J. Am. Coll. Toxicol. 15 (3) (1996) 219–238.

Google Scholar

[15] S. Singh, M. Das, S.K. Khanna, Biodegradation of malachite green and rhodamine-B by cecalmicroflora of rats, Biochem. Biophys. Res. Commun. 200 (3) (1994) 1544–1550.

DOI: 10.1006/bbrc.1994.1626

Google Scholar

[16] V.K. Gupta, I. Ali, V.K. Saini, Removal of Rhodamine B, fast green and methylene blue from wastewater using red mud an aluminum industry waste, Ind. Eng. Chem. Res. 43 (2004) 1740–1747.

DOI: 10.1021/ie034218g

Google Scholar

[17] R.J. Stephenson, J.B. Sheldon, Coagulation and precipitation of a mechanical pulping effluent-1, Removal of carbon and turbidity, Water Res. 30 (1996) 781–792.

DOI: 10.1016/0043-1354(95)00213-8

Google Scholar

[18] I.A. Salem, M. El-maazawi, Kinetics and mechanism of color removal of methylene blue with hydrogen peroxide catalysed by some supported alumina surfaces, Chemosphere 41 (2000) 1173–1180.

DOI: 10.1016/s0045-6535(00)00009-6

Google Scholar

[19] N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi, Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV Oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst, Chem. Eng. J. 112 (2005) 191–196.

DOI: 10.1016/j.cej.2005.07.008

Google Scholar

[20] G. Sharma, A. Kumar, M. Naushad, D. Pathania, M. Sillanpää, Polyacrylamide@Zr(IV) vanadophosphate nanocomposite: Ion exchange properties, antibacterial activity, and photocatalytic behavior, J. Ind. & Eng. Chem. 33 (1), 201-208.

DOI: 10.1016/j.jiec.2015.10.011

Google Scholar

[21] N.N. Rao, K.M. Soma Sekhar, S.N. Kaul, L. Szpyrkowicz, Electrochemical oxidation of tannery wastewater, J. Chem. Technol. 76 (2001) 1124–1131.

DOI: 10.1002/jctb.493

Google Scholar

[22] U. Root, R. Minke, Overview of wastewater treatment and recycling in the textile process industry, Water Sci. Technol. 40 (2000)137–144.

Google Scholar

[23] J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla, M. Sanchez-Polo, Waste materials for activated carbon preparation and its use in aqueous phase treatment: a review, J. Environ. Manag. 85 (2007) 833–846.

DOI: 10.1016/j.jenvman.2007.07.031

Google Scholar

[24] A. Kumar, C. Guo, G. Sharma, D. Pathania, M. Naushad, Magnetically recoverable ZrO2/Fe3O4/Chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr (VI) and dechlorination & mineralization of 4-chlorophenol from simulated waste water. RSC Advances 6 (2016).

DOI: 10.1039/c5ra23372k

Google Scholar

[25] N. Kannan, M.M. Sundaram, 2001. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-acomparative study, Dyes Pigm. 51 (2001) 25–40.

DOI: 10.1016/s0143-7208(01)00056-0

Google Scholar

[26] M. Naushad, S. Vasudevan, G. Sharma, A. Kumar, Z.A. AL-Othman, Adsorption kinetics, isotherms and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin, Desalin. Water Treat. (2015) 1-9.

DOI: 10.1080/19443994.2015.1090914

Google Scholar

[27] R. Dolphen, N. Sakkayanwong, P. Thiravetyan, W. Nakbanpote, Adsorption of Reactive Red 141 from wastewater onto modified chitin, J. Hazard. Mater. 145 (2007) 250–255.

DOI: 10.1016/j.jhazmat.2006.11.026

Google Scholar

[28] F.A. Barzias, D.K. Sidiras, Dye adsorption by prehydrolysed beech sawdust in batch and fixed-bed systems, Bioresour. Technol. 98 (2007) 1208– 2121.

DOI: 10.1016/j.biortech.2006.05.020

Google Scholar

[29] S.D. Khattria, M.K. Singh, Removal of malachite green from dye wastewater using neem sawdust by adsorption, J. Hazard. Mater. 167 (2009) 1089–1094.

DOI: 10.1016/j.jhazmat.2009.01.101

Google Scholar

[30] B.H. Hameed, M.I. El-Khaiary, Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling, J. Hazard. Mater. 159 (2008) 574–579.

DOI: 10.1016/j.jhazmat.2008.02.054

Google Scholar

[31] D. Pathania, G. Sharma, A. Kumar, Mu. Naushad, S. Kalia, A. Sharma, Z. A. ALOthman, Combined sorptional-photocatalytic remediation of dyes by polyaniline Zr(IV) selenotungstophosphate nanocomposite. Toxicol. & Enviro. Chem. 97 (2015) 526-537.

DOI: 10.1080/02772248.2015.1050024

Google Scholar

[32] R. Gong, Y. Jin, F.J. Chen, Z.L. Chen, Enhanced Malachite Green removal from aqueous solution by citric acid modified rice straw, J. Hazard. Mater. 137 (2) (2006) 865–870.

DOI: 10.1016/j.jhazmat.2006.03.010

Google Scholar

[33] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a reviw, J. Environ. Manage. 92 (2011) 407-418.

Google Scholar

[34] R. Sivaraj, C. Namasivayam, K. Kadirvelu, Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions, Waste Manage. 21 (2001) 105–110.

DOI: 10.1016/s0956-053x(00)00076-3

Google Scholar

[35] N. Barka, S. Qouzal, A. Assabbane, A. Nounhan, Y.A. Ichou, Removal of reactive yellow 84 from aqueous solutions by adsorption onto hydroxyapaite, J. Saudi Chem. Soc. 15 (2011) 263–267.

DOI: 10.1016/j.jscs.2010.10.002

Google Scholar

[36] H. Deng, L. Yang, G. Tao, J. Dai, Preparation and characterization of activated 349 carbon from cotton stalk by microwave assisted chemical activation—Application in methylene blue adsorption from aqueous solution, J. Hazard. Mater. 166 (2-3) (2009).

DOI: 10.1016/j.jhazmat.2008.12.080

Google Scholar

[37] E.L. Abd, M.M. Latif, A.M. Ibrahim, Adsorption, kinetic and equilibrium studies on removal of basic dye from aqueous solutions using hydrolyzed oak sawdust, Desalin. Water Treat. 6 (2009) 252–268.

DOI: 10.5004/dwt.2009.501

Google Scholar

[38] P.K. Malik, Use of activated carbons prepared from sawdust and rice-husk for sorption of acid dyes: a case study of acid yellow 36, Dyes Pigm. 56 (2003) 239–249.

DOI: 10.1016/s0143-7208(02)00159-6

Google Scholar

[39] V.K. Gupta, D. Pathania, N.C. Kothiyal, G. Sharma, Polyaniline zirconium (IV) silicophosphate (PANI-ZSP) nanocomposite has been  used for sorptive removal of methylene blue dye from water system, J. Mol. Liq. 190 (2014) 139–145.

DOI: 10.1016/j.molliq.2013.10.027

Google Scholar

[40] B.H. Hameed, M.I. El-Khaiary, Batch removal of malachite green from aqueoussolutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies, J. Hazard. Mater. 154 (2008) 237–244.

DOI: 10.1016/j.jhazmat.2007.10.017

Google Scholar

[41] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403.

DOI: 10.1021/ja02242a004

Google Scholar

[42] G. Huang, J.X. Shi, T.A.G. Langrish, Removal of Cr (VI) from aqueous solution usingactivated carbon modified with nitric acid, Chem. Eng. J. 152 (2009) 434–439.

DOI: 10.1016/j.cej.2009.05.003

Google Scholar

[43] H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem. 57 (1906) 385–470.

Google Scholar

[44] V.K. Gupta, A. Mittal, J. Mittal, Removal and recovery of chrysoidine Y from aqueous solutions by waste materials, J. Colloid Interface Sci. 344 (2010) 497–507.

DOI: 10.1016/j.jcis.2010.01.007

Google Scholar

[45] M.J. Temkin, V. Pyzhev, Recent modification to Langmiur isotherms, Ac. Physiochim. USSR 12 (1940) 217–222.

Google Scholar

[46] M. Ghaedi, A. Ansari, M.H. Habibi, A.R. Asghari, Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: kinetics and isotherm study, J. Ind. Eng. Chem. 20 (1) (2014) 17–28.

DOI: 10.1016/j.jiec.2013.04.031

Google Scholar

[47] Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J. 70 (1998) 115–124.

DOI: 10.1016/s0923-0467(98)00076-1

Google Scholar

[48] S. Saber-Samandari , S. Saber-Samandari, N. Nezafati , K. Yahya, Efficient removal of lead (II) ions and methylene blue from aqueous solution using chitosan/Fe-hydroxyapatite nanocomposite beads, J. Environ. Manage. 146 (2014) 481-490.

DOI: 10.1016/j.jenvman.2014.08.010

Google Scholar

[49] S. Chatterjee, S. Chatterjee, B.P. Chatterjee, A.K. Guha, Adsorptive removal of Congo red, a carcinogenic textile dye by chitosan hydrobeads: binding mechanism, equilibrium and kinetics, Colloids Surf. A 299 (2007) 146–152.

DOI: 10.1016/j.colsurfa.2006.11.036

Google Scholar

[50] H.D. Choi, W.S. Jung, J.M. Cho, B.G. Ryu, J.S. Yang, K. Baek, Adsorption of Cr(VI)onto cationic surfactant-modified activated carbon, J. Hazard. Mater. 166 (2009) 642–646.

DOI: 10.1016/j.jhazmat.2008.11.076

Google Scholar

[51] B.H. Hameed, Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J. Hazard. Mater. 16 (2009) 753–759.

DOI: 10.1016/j.jhazmat.2008.04.019

Google Scholar

[52] L.J. Kennedy, J.J. Vijaya, G. Sekaran, Effect of two-stage process on the preparation and characterization of porous carbon composite from rice husk by phosphoric acid activation, Ind. Eng. Chem. Res. 43 (2004) 1832–1839.

DOI: 10.1021/ie034093f

Google Scholar