[1]
Z. Zaira, C. Chowdhury, S.M. Zain, R.A. Khan, A. Ahmed, Equilibrium Kinetics and Isotherm studies of cu (ii) adsorption from waste water onto alkali activated oil palm ash, Am. J. Appl. Sci. 8(3) (2011) 230-237.
DOI: 10.3844/ajassp.2011.230.237
Google Scholar
[2]
A.P. Vieira, S.A. Santana, C.B. Bezerra, H.S. Silva, J.P. Chaves, J.P. de-Melo, Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp, J. Hazard. Mater. 166 (2009) 1272-1278.
DOI: 10.1016/j.jhazmat.2008.12.043
Google Scholar
[3]
D. Pathania, S. Sharma, Effect of surfactants and electrolyte on removal and recovery of basic dye by using Ficus carica cellulosic fibers as biosorbent, Tenside Surfact. Det. 49(4) (2012) 306-314.
DOI: 10.3139/113.110196
Google Scholar
[4]
V.K. Gupta, D. Pathania, S. Agarwal, S. Sharma, Amputation of congo red dye from waste water using microwave induced grafted Luffa cylindrica cellulosic fiber, Carbohydr. Polym. 111 (2014) 556-566.
DOI: 10.1016/j.carbpol.2014.04.032
Google Scholar
[5]
D. Pathania, R. Katwal, G. Sharma, M. Naushad, M. R. Khan, A. H. Al-Muhtaseb, Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. Inter. J. Bio. Macro. 87(2016) 366-374.
DOI: 10.1016/j.ijbiomac.2016.02.073
Google Scholar
[6]
A.F. Hassan, A.M. Abdel-Mohsen, M.M.G. Fouda, Comparative study of calcium alginate, activated carbon and their composite beads on methylene blue adsorption, Carbohydr. Polym. 102 (2014) 192-198.
DOI: 10.1016/j.carbpol.2013.10.104
Google Scholar
[7]
S. Hajati, M. Ghaedi, F. Karimi, B. Barazesh, R.D.A. Sahraei, Competitive adsorption of Direct Yellow 12 and Reactive Orange 12 on ZnS: Mn nanoparticles loaded on activated carbon as novel adsorbent, J. Ind. Eng. Chem. 20 (2014) 564–571.
DOI: 10.1016/j.jiec.2013.05.015
Google Scholar
[8]
M. Naushad, ZA. ALOthman, G Sharma, Inamuddin, Kinetics, isotherm and thermodynamic investigations for the adsorption of Co(II) ion onto crystal violet modified amberlite IR-120 resin, Ionics 21 (2015) 1453-1459.
DOI: 10.1007/s11581-014-1292-z
Google Scholar
[9]
R. Katwal, H. Kaur, G. Sharma, M. Naushad, D. Pathania, Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity, J. Ind. Eng. Chem. 31(2015)173-184.
DOI: 10.1016/j.jiec.2015.06.021
Google Scholar
[10]
V.K. Gupta, G. Sharma, D. Pathania, N.C. Kothiyal, Nanocomposite pectin Zr (IV) selenotungstophosphate for adsorptional/photocatalytic remediation of methylene blue and malachite green dyes from aqueous system, J. Ind. Eng. Chem. 21(2015).
DOI: 10.1016/j.jiec.2014.05.001
Google Scholar
[11]
M.M. Hanafiah, W.W. Ngah, S.H. Zolkafly, L.C. Teong, M.Z.A., Acid Blue 25 adsorption on base treated Shoreadasyphylla sawdust: Kinetic, isotherm, thermodynamic and spectroscopic analysis, J. Environ. Sci. 24 (2012) 261-268.
DOI: 10.1016/s1001-0742(11)60764-x
Google Scholar
[12]
F.J. Foster, L. Woodbury, The use of malachite green as a fish fungicide and anticeptic, Prog. Fish-Cult. 18 (1936) 7-9.
Google Scholar
[13]
S.J. Culp, L.R. Blankenship, D.F. Kusewitt, D.R. Doerge, L.T. Mulligan, F.A. Beland, Toxicity and metabolism of malachite green and leucomalachite green during short-term feeding to Fischer 344 rats and B6C3F1 mice, Chem. Biol. Interact. 122 (3) (1999).
DOI: 10.1016/s0009-2797(99)00119-2
Google Scholar
[14]
S.J. Culp, F.A. Beland, Malachite green: a toxicological review, J. Am. Coll. Toxicol. 15 (3) (1996) 219–238.
Google Scholar
[15]
S. Singh, M. Das, S.K. Khanna, Biodegradation of malachite green and rhodamine-B by cecalmicroflora of rats, Biochem. Biophys. Res. Commun. 200 (3) (1994) 1544–1550.
DOI: 10.1006/bbrc.1994.1626
Google Scholar
[16]
V.K. Gupta, I. Ali, V.K. Saini, Removal of Rhodamine B, fast green and methylene blue from wastewater using red mud an aluminum industry waste, Ind. Eng. Chem. Res. 43 (2004) 1740–1747.
DOI: 10.1021/ie034218g
Google Scholar
[17]
R.J. Stephenson, J.B. Sheldon, Coagulation and precipitation of a mechanical pulping effluent-1, Removal of carbon and turbidity, Water Res. 30 (1996) 781–792.
DOI: 10.1016/0043-1354(95)00213-8
Google Scholar
[18]
I.A. Salem, M. El-maazawi, Kinetics and mechanism of color removal of methylene blue with hydrogen peroxide catalysed by some supported alumina surfaces, Chemosphere 41 (2000) 1173–1180.
DOI: 10.1016/s0045-6535(00)00009-6
Google Scholar
[19]
N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi, Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV Oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst, Chem. Eng. J. 112 (2005) 191–196.
DOI: 10.1016/j.cej.2005.07.008
Google Scholar
[20]
G. Sharma, A. Kumar, M. Naushad, D. Pathania, M. Sillanpää, Polyacrylamide@Zr(IV) vanadophosphate nanocomposite: Ion exchange properties, antibacterial activity, and photocatalytic behavior, J. Ind. & Eng. Chem. 33 (1), 201-208.
DOI: 10.1016/j.jiec.2015.10.011
Google Scholar
[21]
N.N. Rao, K.M. Soma Sekhar, S.N. Kaul, L. Szpyrkowicz, Electrochemical oxidation of tannery wastewater, J. Chem. Technol. 76 (2001) 1124–1131.
DOI: 10.1002/jctb.493
Google Scholar
[22]
U. Root, R. Minke, Overview of wastewater treatment and recycling in the textile process industry, Water Sci. Technol. 40 (2000)137–144.
Google Scholar
[23]
J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla, M. Sanchez-Polo, Waste materials for activated carbon preparation and its use in aqueous phase treatment: a review, J. Environ. Manag. 85 (2007) 833–846.
DOI: 10.1016/j.jenvman.2007.07.031
Google Scholar
[24]
A. Kumar, C. Guo, G. Sharma, D. Pathania, M. Naushad, Magnetically recoverable ZrO2/Fe3O4/Chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr (VI) and dechlorination & mineralization of 4-chlorophenol from simulated waste water. RSC Advances 6 (2016).
DOI: 10.1039/c5ra23372k
Google Scholar
[25]
N. Kannan, M.M. Sundaram, 2001. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-acomparative study, Dyes Pigm. 51 (2001) 25–40.
DOI: 10.1016/s0143-7208(01)00056-0
Google Scholar
[26]
M. Naushad, S. Vasudevan, G. Sharma, A. Kumar, Z.A. AL-Othman, Adsorption kinetics, isotherms and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin, Desalin. Water Treat. (2015) 1-9.
DOI: 10.1080/19443994.2015.1090914
Google Scholar
[27]
R. Dolphen, N. Sakkayanwong, P. Thiravetyan, W. Nakbanpote, Adsorption of Reactive Red 141 from wastewater onto modified chitin, J. Hazard. Mater. 145 (2007) 250–255.
DOI: 10.1016/j.jhazmat.2006.11.026
Google Scholar
[28]
F.A. Barzias, D.K. Sidiras, Dye adsorption by prehydrolysed beech sawdust in batch and fixed-bed systems, Bioresour. Technol. 98 (2007) 1208– 2121.
DOI: 10.1016/j.biortech.2006.05.020
Google Scholar
[29]
S.D. Khattria, M.K. Singh, Removal of malachite green from dye wastewater using neem sawdust by adsorption, J. Hazard. Mater. 167 (2009) 1089–1094.
DOI: 10.1016/j.jhazmat.2009.01.101
Google Scholar
[30]
B.H. Hameed, M.I. El-Khaiary, Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling, J. Hazard. Mater. 159 (2008) 574–579.
DOI: 10.1016/j.jhazmat.2008.02.054
Google Scholar
[31]
D. Pathania, G. Sharma, A. Kumar, Mu. Naushad, S. Kalia, A. Sharma, Z. A. ALOthman, Combined sorptional-photocatalytic remediation of dyes by polyaniline Zr(IV) selenotungstophosphate nanocomposite. Toxicol. & Enviro. Chem. 97 (2015) 526-537.
DOI: 10.1080/02772248.2015.1050024
Google Scholar
[32]
R. Gong, Y. Jin, F.J. Chen, Z.L. Chen, Enhanced Malachite Green removal from aqueous solution by citric acid modified rice straw, J. Hazard. Mater. 137 (2) (2006) 865–870.
DOI: 10.1016/j.jhazmat.2006.03.010
Google Scholar
[33]
F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a reviw, J. Environ. Manage. 92 (2011) 407-418.
Google Scholar
[34]
R. Sivaraj, C. Namasivayam, K. Kadirvelu, Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions, Waste Manage. 21 (2001) 105–110.
DOI: 10.1016/s0956-053x(00)00076-3
Google Scholar
[35]
N. Barka, S. Qouzal, A. Assabbane, A. Nounhan, Y.A. Ichou, Removal of reactive yellow 84 from aqueous solutions by adsorption onto hydroxyapaite, J. Saudi Chem. Soc. 15 (2011) 263–267.
DOI: 10.1016/j.jscs.2010.10.002
Google Scholar
[36]
H. Deng, L. Yang, G. Tao, J. Dai, Preparation and characterization of activated 349 carbon from cotton stalk by microwave assisted chemical activation—Application in methylene blue adsorption from aqueous solution, J. Hazard. Mater. 166 (2-3) (2009).
DOI: 10.1016/j.jhazmat.2008.12.080
Google Scholar
[37]
E.L. Abd, M.M. Latif, A.M. Ibrahim, Adsorption, kinetic and equilibrium studies on removal of basic dye from aqueous solutions using hydrolyzed oak sawdust, Desalin. Water Treat. 6 (2009) 252–268.
DOI: 10.5004/dwt.2009.501
Google Scholar
[38]
P.K. Malik, Use of activated carbons prepared from sawdust and rice-husk for sorption of acid dyes: a case study of acid yellow 36, Dyes Pigm. 56 (2003) 239–249.
DOI: 10.1016/s0143-7208(02)00159-6
Google Scholar
[39]
V.K. Gupta, D. Pathania, N.C. Kothiyal, G. Sharma, Polyaniline zirconium (IV) silicophosphate (PANI-ZSP) nanocomposite has been used for sorptive removal of methylene blue dye from water system, J. Mol. Liq. 190 (2014) 139–145.
DOI: 10.1016/j.molliq.2013.10.027
Google Scholar
[40]
B.H. Hameed, M.I. El-Khaiary, Batch removal of malachite green from aqueoussolutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies, J. Hazard. Mater. 154 (2008) 237–244.
DOI: 10.1016/j.jhazmat.2007.10.017
Google Scholar
[41]
I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403.
DOI: 10.1021/ja02242a004
Google Scholar
[42]
G. Huang, J.X. Shi, T.A.G. Langrish, Removal of Cr (VI) from aqueous solution usingactivated carbon modified with nitric acid, Chem. Eng. J. 152 (2009) 434–439.
DOI: 10.1016/j.cej.2009.05.003
Google Scholar
[43]
H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem. 57 (1906) 385–470.
Google Scholar
[44]
V.K. Gupta, A. Mittal, J. Mittal, Removal and recovery of chrysoidine Y from aqueous solutions by waste materials, J. Colloid Interface Sci. 344 (2010) 497–507.
DOI: 10.1016/j.jcis.2010.01.007
Google Scholar
[45]
M.J. Temkin, V. Pyzhev, Recent modification to Langmiur isotherms, Ac. Physiochim. USSR 12 (1940) 217–222.
Google Scholar
[46]
M. Ghaedi, A. Ansari, M.H. Habibi, A.R. Asghari, Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: kinetics and isotherm study, J. Ind. Eng. Chem. 20 (1) (2014) 17–28.
DOI: 10.1016/j.jiec.2013.04.031
Google Scholar
[47]
Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J. 70 (1998) 115–124.
DOI: 10.1016/s0923-0467(98)00076-1
Google Scholar
[48]
S. Saber-Samandari , S. Saber-Samandari, N. Nezafati , K. Yahya, Efficient removal of lead (II) ions and methylene blue from aqueous solution using chitosan/Fe-hydroxyapatite nanocomposite beads, J. Environ. Manage. 146 (2014) 481-490.
DOI: 10.1016/j.jenvman.2014.08.010
Google Scholar
[49]
S. Chatterjee, S. Chatterjee, B.P. Chatterjee, A.K. Guha, Adsorptive removal of Congo red, a carcinogenic textile dye by chitosan hydrobeads: binding mechanism, equilibrium and kinetics, Colloids Surf. A 299 (2007) 146–152.
DOI: 10.1016/j.colsurfa.2006.11.036
Google Scholar
[50]
H.D. Choi, W.S. Jung, J.M. Cho, B.G. Ryu, J.S. Yang, K. Baek, Adsorption of Cr(VI)onto cationic surfactant-modified activated carbon, J. Hazard. Mater. 166 (2009) 642–646.
DOI: 10.1016/j.jhazmat.2008.11.076
Google Scholar
[51]
B.H. Hameed, Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J. Hazard. Mater. 16 (2009) 753–759.
DOI: 10.1016/j.jhazmat.2008.04.019
Google Scholar
[52]
L.J. Kennedy, J.J. Vijaya, G. Sekaran, Effect of two-stage process on the preparation and characterization of porous carbon composite from rice husk by phosphoric acid activation, Ind. Eng. Chem. Res. 43 (2004) 1832–1839.
DOI: 10.1021/ie034093f
Google Scholar