Evaluation of Electrochemical Properties, Study of Chemical and Mechanical Stability Supported with Ionic Transport and Surface Charge Density Mechanism of PVC Based Cobalt Tungstate Cation Exchange Membrane

Article Preview

Abstract:

The chemical and mechanical stability of membrane play a important role for understanding the mechanism and applications of cobalt tungstate cation exchange membrane. The PVC based cobalt tungstate (CT) membrane has been prepared by different methods like sol-gel, die-casting and others material processing techniques. It has been prepared through the mixing of PVC with cobalt tungstate into a definite ratio (1:3) that shows good mechanical stability. Moreover, the paper is concerned with physico-chemical and electro-chemical characterization of membrane, namely fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical studies. The results of characterization and electrochemical studies offered the potential industrial applications of membrane in different areas.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-136

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kim, S.J. Kim, D.K. Kim, Energy harvesting from salinity gradient by reverse Electrodialysis with anodic alumina nanopores, Energy 51 (2013) 413–421.

DOI: 10.1016/j.energy.2013.01.019

Google Scholar

[2] B.E. Logan, M. Elimelech, membrane-based processes for sustainable power generation using water, Nature 488 (2012) 313–319.

DOI: 10.1038/nature11477

Google Scholar

[3] G.Z. Ramon, B.J. Feinberg, E.M.V. Hoek, membrane-based production of salinity-gradient power, Energy Env. Sci. 4 (2011) 4423.

DOI: 10.1039/c1ee01913a

Google Scholar

[4] K. Mahendra, B.P. Tripathi, V.K. Shahi, Ionic transport phenomenon across sol-gel derived organic–inorganic composite mono-valent cation selective membranes, J. Membr. Sci. 340 (2009) 52.

DOI: 10.1016/j.memsci.2009.05.010

Google Scholar

[5] R.J. Petersen, Composite reverse-osmosis and nanofiltration membranes, J. Membr. Sci. 83 (1993) 81.

Google Scholar

[6] M.D. Afonso, J.O. Jaber, M.S. Mohsen, Brackish groundwater treatment by reverse osmosis in Jordan, Desalination 164 (2004) 157.

DOI: 10.1016/s0011-9164(04)00175-4

Google Scholar

[7] S.P. Agashichev, M.E. El-Dahshan, Reverse osmosis incorporated into existing cogenerating systems as a sustainable technological alternative for United Arab Emirates, Desalination 157 (2003) 33.

DOI: 10.1016/s0011-9164(03)00381-3

Google Scholar

[8] M.M.A. Khan, Rafiuddin and Inamuddin Synthesis, physico-chemical characterization, transport phenomena and antibacterial activity of polystyrene based barium phosphate composite membrane, J. Ind. Eng. Chem. 19 (2013) 120–128.

DOI: 10.1016/j.jiec.2012.07.013

Google Scholar

[9] M.M.A. Khan and Rafiuddin, Synthesis, characterization and electrochemical study of calcium phosphate ion-exchange membrane, Desalination, 272 (2011) 306–312.

DOI: 10.1016/j.desal.2011.01.041

Google Scholar

[10] M.M. A Khan, Rafiuddin and Inamuddin, Electrochemical characterization and transport properties of polyvinyl chloride based carboxymethyl cellulose Ce(IV) molybdophosphate composite cation exchange membrane, J. Ind. Eng. Chem 18 2012) 1391–1397.

DOI: 10.1016/j.jiec.2012.01.042

Google Scholar

[11] P. Gagliardo, S. Adham, R. Trussell, A. Olivieri, Water repurification via reverse osmosis, Desalination 117 (1998) 73.

DOI: 10.1016/s0011-9164(98)00069-1

Google Scholar

[12] N. Hilal, H. Al-Zoubi, N.A. Darwish, A.W. Mohamma, M. Abu Arabi, A comprehensive review of nanofiltration membranes: treatment, pretreatment, modeling, and atomic force microscopy, Desalination 170 (2004).

DOI: 10.1016/j.desal.2004.01.007

Google Scholar

[13] C. Cornelius, C. Hibshman, E. Marand, Hybrid organic–inorganic membranes, Sep. Purif. Technol. 25 (2001) 181–193.

DOI: 10.1016/s1383-5866(01)00102-2

Google Scholar

[14] Y.A. Le Gouellec, M. Elimelech, Control of calcium sulfate (gypsum) scale in nanofiltration of saline agricultural drainage water, Environ. Eng. Sci. 19 (2002) 387.

DOI: 10.1089/109287502320963382

Google Scholar

[15] T. Teorell, An attempt to formulate a quantitative theory of membrane permeability, Proc Soc Exp Biol (1935) 33, 282-285.

DOI: 10.3181/00379727-33-8339c

Google Scholar

[16] T. Teorell, Studies on the Diffusion Effect, upon Ionic Distribution, some theoretical Considerations, procedding of the national academy of sciences of the united states of america, 3 (1935) 152–161.

DOI: 10.1073/pnas.21.3.152

Google Scholar

[20] K.H. Meyer, J.F. Sievers, Permeability of membranes. I. Theory of ionic permeability, permeability of membranes. II. Studies with artificial selective membranes, Helv. chim. acta., 19 (1936) 649–664.

Google Scholar

[18] I. Altug and M. L. Hair, Porous glass as an ionic membrane, J. Phys. Chem., 72 (1968) 599-603.

DOI: 10.1021/j100848a035

Google Scholar

[19] N. Kamo, M. Ockawa, and Y. Kobatake, Effective fixed charge density governing membrane phenomena. V. Reduced expression of permselectivity J. Phys. Chem., 77(1973), 92-95.

DOI: 10.1021/j100620a020

Google Scholar

[20] M. Yuasa, Y. Kobatake, and H. Fuhita, Studies of membrane phenomena. VII. Effective charge densities of membrane, J. Phys. Chem., (1968), 72, 2871-2876.

DOI: 10.1021/j100854a031

Google Scholar

[21] M. Tasaka, N. Aoki, Y. Kondo, and M. Nagasawa, Membrane potentials and electrolyte permeation velocities in charged membranes J. Phys. Chem., 79 (1975), 1307-1314.

DOI: 10.1021/j100580a017

Google Scholar

[22] M. Nagasawa and Y. Kobatake, The Theory of Membrane Potential, J. Phys. Chem., 56, (1952), 1017-1024.

Google Scholar

[23] M.M.A. Khan and Rafiuddin, Synthesis, characterization and antibacterial activity of polystyrene based Mg3 (PO4)2/Ca3 (PO4)2 composite membrane, Desalination 294 (2012) 74–81.

DOI: 10.1016/j.desal.2012.03.011

Google Scholar

[24] ASTM D543-95, Standard particles for evaluating the resistance of plastics to chemical reagents, 1998, p.27.

Google Scholar

[25] M.M.A. Khan, Rafiuddin , Preparation, electrochemical characterization and antibacterial study of polystyrene-based magnesium–strontium phosphate composite membrane, Mater. Sci. Eng. C, 32 (2012)1210–1217.

DOI: 10.1016/j.msec.2012.03.010

Google Scholar

[26] M.M.A. Khan, Rafiuddin and Inamuddin, Evaluation of transport parameters for PVC based polyvinyl alcohol Ce(IV) phosphate composite membrane, Mater. Sci. Eng. C, 33 (2013) 2360–2366.

DOI: 10.1016/j.msec.2013.01.067

Google Scholar

[27] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordinate Compounds, Wiley-Interscience, New York, (1986).

Google Scholar