[1]
J. Kim, S.J. Kim, D.K. Kim, Energy harvesting from salinity gradient by reverse Electrodialysis with anodic alumina nanopores, Energy 51 (2013) 413–421.
DOI: 10.1016/j.energy.2013.01.019
Google Scholar
[2]
B.E. Logan, M. Elimelech, membrane-based processes for sustainable power generation using water, Nature 488 (2012) 313–319.
DOI: 10.1038/nature11477
Google Scholar
[3]
G.Z. Ramon, B.J. Feinberg, E.M.V. Hoek, membrane-based production of salinity-gradient power, Energy Env. Sci. 4 (2011) 4423.
DOI: 10.1039/c1ee01913a
Google Scholar
[4]
K. Mahendra, B.P. Tripathi, V.K. Shahi, Ionic transport phenomenon across sol-gel derived organic–inorganic composite mono-valent cation selective membranes, J. Membr. Sci. 340 (2009) 52.
DOI: 10.1016/j.memsci.2009.05.010
Google Scholar
[5]
R.J. Petersen, Composite reverse-osmosis and nanofiltration membranes, J. Membr. Sci. 83 (1993) 81.
Google Scholar
[6]
M.D. Afonso, J.O. Jaber, M.S. Mohsen, Brackish groundwater treatment by reverse osmosis in Jordan, Desalination 164 (2004) 157.
DOI: 10.1016/s0011-9164(04)00175-4
Google Scholar
[7]
S.P. Agashichev, M.E. El-Dahshan, Reverse osmosis incorporated into existing cogenerating systems as a sustainable technological alternative for United Arab Emirates, Desalination 157 (2003) 33.
DOI: 10.1016/s0011-9164(03)00381-3
Google Scholar
[8]
M.M.A. Khan, Rafiuddin and Inamuddin Synthesis, physico-chemical characterization, transport phenomena and antibacterial activity of polystyrene based barium phosphate composite membrane, J. Ind. Eng. Chem. 19 (2013) 120–128.
DOI: 10.1016/j.jiec.2012.07.013
Google Scholar
[9]
M.M.A. Khan and Rafiuddin, Synthesis, characterization and electrochemical study of calcium phosphate ion-exchange membrane, Desalination, 272 (2011) 306–312.
DOI: 10.1016/j.desal.2011.01.041
Google Scholar
[10]
M.M. A Khan, Rafiuddin and Inamuddin, Electrochemical characterization and transport properties of polyvinyl chloride based carboxymethyl cellulose Ce(IV) molybdophosphate composite cation exchange membrane, J. Ind. Eng. Chem 18 2012) 1391–1397.
DOI: 10.1016/j.jiec.2012.01.042
Google Scholar
[11]
P. Gagliardo, S. Adham, R. Trussell, A. Olivieri, Water repurification via reverse osmosis, Desalination 117 (1998) 73.
DOI: 10.1016/s0011-9164(98)00069-1
Google Scholar
[12]
N. Hilal, H. Al-Zoubi, N.A. Darwish, A.W. Mohamma, M. Abu Arabi, A comprehensive review of nanofiltration membranes: treatment, pretreatment, modeling, and atomic force microscopy, Desalination 170 (2004).
DOI: 10.1016/j.desal.2004.01.007
Google Scholar
[13]
C. Cornelius, C. Hibshman, E. Marand, Hybrid organic–inorganic membranes, Sep. Purif. Technol. 25 (2001) 181–193.
DOI: 10.1016/s1383-5866(01)00102-2
Google Scholar
[14]
Y.A. Le Gouellec, M. Elimelech, Control of calcium sulfate (gypsum) scale in nanofiltration of saline agricultural drainage water, Environ. Eng. Sci. 19 (2002) 387.
DOI: 10.1089/109287502320963382
Google Scholar
[15]
T. Teorell, An attempt to formulate a quantitative theory of membrane permeability, Proc Soc Exp Biol (1935) 33, 282-285.
DOI: 10.3181/00379727-33-8339c
Google Scholar
[16]
T. Teorell, Studies on the Diffusion Effect, upon Ionic Distribution, some theoretical Considerations, procedding of the national academy of sciences of the united states of america, 3 (1935) 152–161.
DOI: 10.1073/pnas.21.3.152
Google Scholar
[20]
K.H. Meyer, J.F. Sievers, Permeability of membranes. I. Theory of ionic permeability, permeability of membranes. II. Studies with artificial selective membranes, Helv. chim. acta., 19 (1936) 649–664.
Google Scholar
[18]
I. Altug and M. L. Hair, Porous glass as an ionic membrane, J. Phys. Chem., 72 (1968) 599-603.
DOI: 10.1021/j100848a035
Google Scholar
[19]
N. Kamo, M. Ockawa, and Y. Kobatake, Effective fixed charge density governing membrane phenomena. V. Reduced expression of permselectivity J. Phys. Chem., 77(1973), 92-95.
DOI: 10.1021/j100620a020
Google Scholar
[20]
M. Yuasa, Y. Kobatake, and H. Fuhita, Studies of membrane phenomena. VII. Effective charge densities of membrane, J. Phys. Chem., (1968), 72, 2871-2876.
DOI: 10.1021/j100854a031
Google Scholar
[21]
M. Tasaka, N. Aoki, Y. Kondo, and M. Nagasawa, Membrane potentials and electrolyte permeation velocities in charged membranes J. Phys. Chem., 79 (1975), 1307-1314.
DOI: 10.1021/j100580a017
Google Scholar
[22]
M. Nagasawa and Y. Kobatake, The Theory of Membrane Potential, J. Phys. Chem., 56, (1952), 1017-1024.
Google Scholar
[23]
M.M.A. Khan and Rafiuddin, Synthesis, characterization and antibacterial activity of polystyrene based Mg3 (PO4)2/Ca3 (PO4)2 composite membrane, Desalination 294 (2012) 74–81.
DOI: 10.1016/j.desal.2012.03.011
Google Scholar
[24]
ASTM D543-95, Standard particles for evaluating the resistance of plastics to chemical reagents, 1998, p.27.
Google Scholar
[25]
M.M.A. Khan, Rafiuddin , Preparation, electrochemical characterization and antibacterial study of polystyrene-based magnesium–strontium phosphate composite membrane, Mater. Sci. Eng. C, 32 (2012)1210–1217.
DOI: 10.1016/j.msec.2012.03.010
Google Scholar
[26]
M.M.A. Khan, Rafiuddin and Inamuddin, Evaluation of transport parameters for PVC based polyvinyl alcohol Ce(IV) phosphate composite membrane, Mater. Sci. Eng. C, 33 (2013) 2360–2366.
DOI: 10.1016/j.msec.2013.01.067
Google Scholar
[27]
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordinate Compounds, Wiley-Interscience, New York, (1986).
Google Scholar