[1]
http, /www. etymonline. com/index. php?l=p&p=23.
Google Scholar
[2]
N. Kashyap, N. Kumar, MNV Ravi Kumar MNV, Hydrogels for Pharmaceutical and Biomedical Applications. Ther. Drug Carrier Syst. 22 (2005) 107–150.
DOI: 10.1615/critrevtherdrugcarriersyst.v22.i2.10
Google Scholar
[3]
A. S. Hoffman, G. Schmer, C. Harris, W. G. Kraft, Covalent binding of biomolecules to radiation-grafted hydrogels on inert polymer surfaces, Trans. Am. Soc. Artif. Intern. Organs. 18(1972) 10–18.
DOI: 10.1097/00002480-197201000-00003
Google Scholar
[4]
B. D. Ratner, A. S. Hoffman, Synthetic hydrogels for biomedical applications. In, Hydrogels for Medical and Related Applications, ACS Symposium Series Vol. 31, American Chemical Society, Washington, DC 1976, 1–36.
DOI: 10.1021/bk-1976-0031.ch001
Google Scholar
[5]
N. A. Peppas, Hydrogels in Medicine and Pharmacy Vols. I–III, CRC Press, Boca Raton, F L, (1987).
Google Scholar
[6]
K. Park, W.S.W. Shalaby, H. Park, Biodegradable hydrogels for drug delivery, Technomic, Lancaster, PA, (1993).
Google Scholar
[7]
R.S. Harland, R.K. Prud'homme, Polyelectrolyte gels, properties, preparation, and applications, American Chemical Society, Washington, DC, 29. (1992).
Google Scholar
[8]
K. Ulbrich, V. Subr, P. Podperová, M. Buresová, Synthesis of novel hydrolytically degradable hydrogels for controlled drug release, J. Controlled Release. 34 (1995) 155–165.
DOI: 10.1016/0168-3659(95)00004-r
Google Scholar
[9]
A.S. Hoffman, Intelligent polymers. Controlled Drug Delivery, American Chemical Society, Washington, DC, (1997).
Google Scholar
[10]
O. Wichterle, D. Lim, Hydrophillic gels for biological use, Nature. 185 (1960) 117-118.
Google Scholar
[11]
K. Nguyen, J. West, Photopolymerizable hydrogels for tissue engineering applications, Biomater. 23(2002) 4307-4314.
DOI: 10.1016/s0142-9612(02)00175-8
Google Scholar
[12]
N. Peppas, P. Bures, Hydrogels in pharmaceutical formulations, Eur. J. Pharm. Biopharm. 2000, 50, 27-46.
Google Scholar
[13]
A. Sawhney, C. Pathak, Optimization of photopolymerizedbioerodible hydrogel properties for adhesion prevention, J. Biomed. Mat. Res, 1994, 28, 831-838.
Google Scholar
[14]
S.H. Gehrke, P.I. Lee, Hydrogels for drug delivery systems. In Specialized Drug Delivery Systems 1990, 333–392, Marcel Dekker.
Google Scholar
[15]
R. Dagani, Intelligent gels, Chem. Eng. News. 75(1997) 26–36.
Google Scholar
[16]
J.A. Harvey, Smart materials. In Encyclopedia of Chemical Technology, John Wiley & Sons, 1995, p.502–514.
Google Scholar
[17]
J. Kost, Intelligent drug delivery systems. In Encyclopaedia of Controlled Drug Delivery, John Wiley& Sons, 1999, pp-445–459.
Google Scholar
[18]
A.S. Hoffman, Hydrogels for biomedical applications, Adv. Drug Deliv. Rev. 54(2002) 3-12.
Google Scholar
[19]
S.H. Gehrke, Synthesis and properties of hydrogels used for drug delivery. In Transport Processes in Pharmaceutical Systems, Marcel Dekker, 2000, pp-473–546.
Google Scholar
[20]
J. Rowley, G. Madlambayan, J. Faulkner, D.J. Mooney, Alginate hydrogels as synthetic extracellular matrix materials, Biomaterials. 20 (1999) 45-53.
DOI: 10.1016/s0142-9612(98)00107-0
Google Scholar
[21]
Z. Chen, M. Liu, Synthesis and modification of salt-resistant superabsorbent polymers, React. Funct. Polym. 62 (1) (2005) 85–92.
Google Scholar
[22]
N.A. Peppas, A.G. Mikos, Preparation methods and structure of hydrogels, Hydrogels in Medicine and Pharmacy, Vol I, CRC Press, Boca Raton, FL, 986, 1.
Google Scholar
[23]
W.E. Hennink, C.F. van Nostrum, Novel crosslinking methods to design hydrogels, Adv. Drug Deliv. Rev. 54 (2002) 13-36.
DOI: 10.1016/s0169-409x(01)00240-x
Google Scholar
[24]
X.Z. Shu, K.J. Zhu, Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure, Int. J. Pharm. 233(2002) 217-225.
DOI: 10.1016/s0378-5173(01)00943-7
Google Scholar
[25]
J.A. Ko, H.J. Park, S.J. Hwang, J.B. Park, J.S. Lee, Preparation and characterization of chitosan microparticles intended for controlled drug delivery, Int. J. Pharm. 249(2002) 165-174.
DOI: 10.1016/s0378-5173(02)00487-8
Google Scholar
[26]
V. Kudela, H.F. Mark, J.I. Kroschwitz, Encyclopedia of Polymer Science and Technology, Wiley, New York, 1985, 7, 783.
Google Scholar
[27]
J. Varshosaz, M. Falamarzian, Drug diffusion mechanism through pH-sensitive hydrophobic/polyelectrolyte hydrogel membranes, Eur. J. Pharm. Biopharm. 51(2001) 235-240.
DOI: 10.1016/s0939-6411(01)00126-6
Google Scholar
[28]
E.S. Gil, S.M. Hudson, Stimuli responsive polymers and their bioconjugates, Prog. Polym. Sci. 9 (12) (2004) 1173-222.
Google Scholar
[29]
A.M. Lowman, N.A. Peppas, Hydrogels, Encycl. Controlled Drug Delivery. 1(1999) 397–418.
Google Scholar
[30]
M. Brownlee, A. Cerami, A glucose-controlled insulin delivery system: semisynthetic insulin bound to lectin, Sci. 206 (1979) 1190–1191.
DOI: 10.1126/science.505005
Google Scholar
[31]
S.W. Kim, C.M. Pai, K. Makino, L.A. Seminoff, D.L. Holmberg, J.M. Gleeson, D.E. Wilson, E.J. Mack, Self- regulated glycosylated insulin delivery, J. Control Rel. 11(1990)193–201.
DOI: 10.1016/0168-3659(90)90132-d
Google Scholar
[32]
S.I. Kang, Y.H. Bae, A sulfonamide based glucose responsive hydrogel with covalently immobilized glucose oxidase and catalase, J. Control Rel. 86 (1) (2003) 115-121.
DOI: 10.1016/s0168-3659(02)00409-1
Google Scholar
[33]
J. Pluta, B. Karolewicz, Hydrogels, properties and application in the technology of drug form I. The characterization hydrogels, Polim Med. 34(2) ( 2004) 3-19.
Google Scholar
[34]
K. Akiyoshi, S. Kobayashi S, Schichibes, D. Mix, M. Baudys, S.W. Kim, J. Sunamato, Self assembled hydrogels nanoparticle of cholesterol bearing pullulan as a carrier of protein drugs. Complexation and stabilization of insulin, J. Control Rel. 54(3) (1998).
DOI: 10.1016/s0168-3659(98)00017-0
Google Scholar
[35]
N.S. Bodor, Chemical Aspects of Drug Delivery Systems. D.R. Karsa, R.A. Stephenson, Eds; Royal Society of Chemistry: London, (1996).
Google Scholar
[36]
J.E. Elliotta, M. Macdonalda, J. Niea, C.N. Bowman, Structure and swelling of poly (acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the cross-linked polymer structure, Polym. 45 (2004) 1503–1510.
DOI: 10.1016/j.polymer.2003.12.040
Google Scholar
[37]
R. Pereira, A. Carvalho, D.C. Vaz, M.H. Gil, A. Mendes, P. Bártolo, Development of novel alginate based hydrogel films for wound healing applications, Int. J. Biol. Macromol. 52 (2013) 221– 230.
DOI: 10.1016/j.ijbiomac.2012.09.031
Google Scholar
[38]
Y-I Shen, H-Ho, G. Song, A. E. Papa, J.A. Burke, S.W. Volk, S. Gerecht, Acellular hydrogels for regenerative burn wound healing: Translation from a porcine model, J. Invest. Dermatol. 135 (2015) 2519–2529.
DOI: 10.1038/jid.2015.182
Google Scholar
[39]
N.T. Lacin, Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing, Int. J. Biol. Macromo. 67 (2014) 22–27.
Google Scholar
[40]
C.Y. Gong, Q. Wu, Y. Jun, W. Dou, D. Zhang, F. Luo, X. Zhao, Y.Q. Wei, Z.Y. Qian, A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing, Biomater. 34 (2013) 6377-6387.
DOI: 10.1016/j.biomaterials.2013.05.005
Google Scholar
[41]
C.Y. Tsai, L.C. Woung, J.C. Yen, P.C. Tseng, S.H. Chiou, Y.J. Sung, K.T. Liu, Y.H. Cheng, Thermosensitive chitosan-based hydrogels for sustained release of ferulic acid on corneal wound healing, Carbohydr. Polym. 135 (2016) 308–315.
DOI: 10.1016/j.carbpol.2015.08.098
Google Scholar
[42]
N. Bhattarai, J. Gunn, M. Zhang, Chitosan-based hydrogels for controlled, localized drug delivery, Adv. Drug Delivery Rev. 62 (2010) 83–99.
DOI: 10.1016/j.addr.2009.07.019
Google Scholar
[43]
S. Murdan, Electro-responsive drug delivery from hydrogels, J. Controlled Release. 92 (2003) 1–17.
DOI: 10.1016/s0168-3659(03)00303-1
Google Scholar
[44]
D. Gulsen, A. Chauhan, Dispersion of micro emulsion drops in HEMA hydrogel: a potential ophthalmic drug delivery vehicle, Int. J. Pharm. 292 (2005) 95–117.
DOI: 10.1016/j.ijpharm.2004.11.033
Google Scholar
[45]
B. Singh, V. Sharma, Design of psyllium–PVA–acrylic acid based novel hydrogels for use in antibiotic drug delivery, Int. J. Pharm. 389 (2010) 94–106.
DOI: 10.1016/j.ijpharm.2010.01.022
Google Scholar
[46]
S.J. Bidarra, C.C. Barrias, Pedro L. Granja, Injectable alginate hydrogels for cell delivery in tissue engineering, Acta Biomater. 10 (2014) 1646–1662.
DOI: 10.1016/j.actbio.2013.12.006
Google Scholar
[47]
B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, N.A. Peppas, Hydrogels in regenerative medicine, Adv. Mater. 21 (32–33) (2009) 3307–3329.
DOI: 10.1002/adma.200802106
Google Scholar
[48]
H. Park, S.W. Kang, B.S. Kim, D.J. Mooney, K.Y. Lee, Shear-reversibly cross linked alginate hydrogels for tissue engineering, Macromol. Biosci. 9 (9) (2009) 895–901.
DOI: 10.1002/mabi.200800376
Google Scholar
[49]
C.L. Salgado, M.B. Oliveira, J.F. Mano, Combinatorial cell-3D biomaterials cyto compatibility screening for tissue engineering using bio inspired super hydrophobic substrates, Integr. Biol.: Quant. Biosci. Nano Macro. 4 (3) (2012) 318–327.
DOI: 10.1039/c2ib00170e
Google Scholar
[50]
W.B. Liechty D.R. Kryscio, B.V. Slaughter, N.A. Peppas, Polymers for drug delivery systems, Annu. Rev. Chem. Biomol. Eng. 1 (2010) 149–173.
DOI: 10.1146/annurev-chembioeng-073009-100847
Google Scholar
[51]
T. Vermonden, R. Censi, W.E. Hennink, Hydrogels for protein delivery, Chem. Rev. 112 (5) (2012) 2853–2888.
DOI: 10.1021/cr200157d
Google Scholar
[52]
Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery, Adv. Drug Deliv. Rev. 53 (3) (2001) 321–339.
DOI: 10.1016/s0169-409x(01)00203-4
Google Scholar
[53]
R. Langer, Drug delivery and targeting, Nature 392 (6679 Suppl) (1998) 5–10.
Google Scholar
[54]
Y. Tanaka, J.P. Gong, Y. Osada, Novel hydrogels with excellent mechanical performance, Prog. Polym. Sci. 30 (1) (2005) 1–9.
Google Scholar
[55]
P. Calvert, Hydrogels for soft machines, Adv. Mater. 21 (7) (2009) 743–756.
Google Scholar
[56]
P.C. Thomas, B.H. Cipriano, S.R. Raghavan, Nanoparticle-crosslinked hydrogels as a class of efficient materials for separation and ion exchange, Soft Matter. 7 (18) (2011) 8192–8197.
DOI: 10.1039/c1sm05369h
Google Scholar
[57]
A.B. Imran, T. Seki, Y. Takeoka, Recent advances in hydrogels in terms of fast stimuli responsiveness and superior mechanical performance, Polym. J. 42 (11) (2010) 839–851.
DOI: 10.1038/pj.2010.87
Google Scholar
[58]
D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature. 404 (6778) (2000) 588–590.
DOI: 10.1038/35007047
Google Scholar
[59]
D. Kim, D.J. Beebe, Hydrogel-based reconfigurable components for microfluidic devices, Lab Chip. 7 (2) (2007) 193–198.
DOI: 10.1039/b612995a
Google Scholar
[60]
H.C. Chiu, Y.W. Lin, Y.F. Huang, C.K., Chuang, C.S. Chern, Polymer vesicles containing small vesicles within interior aqueous compartments and pH-responsive transmembrane channels, Angew. Chem. Int. Ed. 47 (10) (2008) 1875–1878.
DOI: 10.1002/anie.200704078
Google Scholar
[61]
F.G. Thankam, J. Muthu, Alginate–polyester comacromer based hydrogels as physiochemically and biologically favorable entities for cardiac tissue engineering, J. Colloid Interface Sci. 457 (2015) 52–61.
DOI: 10.1016/j.jcis.2015.06.034
Google Scholar
[62]
A.M.S. Costa, J.F. Mano, Extremely strong and tough hydrogels as prospective candidates for tissue repair – A review, EurPolym. J. 72 (2015) 344–364.
DOI: 10.1016/j.eurpolymj.2015.07.053
Google Scholar
[63]
H. Rajpurohit, P. Sharma, S. Sharma, A. Bhandari, Polymers for colon targeted drug delivery, Indian J. Pharm. Sci. 72(6) 2010 689–696.
DOI: 10.4103/0250-474x.84576
Google Scholar
[64]
L. Hovgaard, H. Brøndsted, Dextran hydrogels for colon-specific drug delivery, J. Controlled Release. 36 (1995) 159-166.
DOI: 10.1016/0168-3659(95)00049-e
Google Scholar
[65]
S.S. Vaghani, M.M. Patel, C.S. Satish, Synthesis and characterization of pH-sensitive hydrogel composed of carboxymethyl chitosan for colon targeted delivery of ornidazole, Carbohydr. Res. 347 (2012) 76–82.
DOI: 10.1016/j.carres.2011.04.048
Google Scholar
[66]
S.N.S. Anumolu, Y. Singh, D. Gao, S. Stein, P.J. Sinko, Design and evaluation of novel fast forming pilocarpine-loaded ocular hydrogels for sustained pharmacological response, J. Control. Release. 137(2009) 152–159.
DOI: 10.1016/j.jconrel.2009.03.016
Google Scholar
[67]
M. Casolaro, I. Casolaro, S. Lamponi, Stimuli-responsive hydrogels for controlled pilocarpine ocular delivery, Eur. J. Pharm. Biopharm. 80(2012) 553–561.
DOI: 10.1016/j.ejpb.2011.11.013
Google Scholar
[68]
M.L. Lovett, X. Wang, T. Yucel, L. York, M. Keirstead , L. Haggerty, D.L. Kaplan, Silk hydrogels for sustained ocular delivery of anti-vascular endothelial growth factor (anti-VEGF) therapeutics, Eur. J. Pharm. Biopharm. 95 (2015) 271–278.
DOI: 10.1016/j.ejpb.2014.12.029
Google Scholar
[69]
X. Xu, Y. Weng, L. Xu, H. Chen, Sustained release of avastin® from polysaccharides cross-linked hydrogels for ocular drug delivery, Int. J. Biol. Macromol. 60 (2013) 272– 276.
DOI: 10.1016/j.ijbiomac.2013.05.034
Google Scholar
[70]
F.A. Maulvi, D.H. Lakdawala, A.A. Shaikh, A.R. Desai, H.H. Choksi, R.J. Vaidya, K.M. Ranch, A.R. Koli, B.A. Vyas, D.O. Shah, F.A. Maulvi, D.H. Lakdawala, A.A. Shaikh, A.R. Desai, H.H. Choksi, R.J. Vaidya, K.M. Ranch, A.R. Koli, B.A. Vyas, D.O. Shah, In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery, J. Controlled Release. 226 (2016).
DOI: 10.1016/j.jconrel.2016.02.012
Google Scholar
[71]
X.Y. Li, Z. Zhang, H. Chen, Development and evaluation of fast forming nano-composite hydrogel for ocular delivery of diclofenac, Int. J. Pharm. 448 (2013) 96– 100.
DOI: 10.1016/j.ijpharm.2013.03.024
Google Scholar
[72]
R. Bashir, J.Z. Hilt, O. Elibol, A. Gupta, N.A. Peppas, Micromechanical cantilever as an ultrasensitive pH microsensor, Appl. Phys. Lett. 81 (16) (2002) 3091–3093.
DOI: 10.1063/1.1514825
Google Scholar
[73]
N.F. Sheppard, M.J. Lesho, P. McNally, A.S. Francomacaro, Microfabricatedconductimetric pH sensor, Sens. Actuators B 28 (2) (1995) 95–102.
DOI: 10.1016/0925-4005(94)01542-p
Google Scholar
[74]
C. Ruan, K. Zeng, C.A. Grimes, A mass-sensitive pH sensor based on a stimuli-responsive polymer, Anal. Chim. Acta 497 (1–2) (2003) 123–131.
DOI: 10.1016/j.aca.2003.08.051
Google Scholar
[75]
H. Maruyama, H. Matsumoto, T. Fukuda, F. Arai, Functionalized hydrogel surface patterned in a chip for local pH sensing, in: IEEE 21st Int. Conf. on Microelectromech. Syst., 2008. MEMS 2008, (2008).
DOI: 10.1109/memsys.2008.4443633
Google Scholar
[76]
A. Sivashanmugam, R. Arun Kumar, M. Vishnu Priya, Shantikumar V. Nair, R. Jayakumar, An overview of injectable polymeric hydrogels for tissue engineering, Eur. Polym. J. 72 (2015) 543-565.
DOI: 10.1016/j.eurpolymj.2015.05.014
Google Scholar
[77]
S.L. Tomic, M.M. Micic, S.N. Dobic, J.M. Filipovic, E.H. Suljovrujic, Smart poly (2-hyclroxycthyl methacrylate/itaconic acid) hydrogcls for biomedical application, Radiat. Phys. Chem., 79 (2010) 643-649.
DOI: 10.2298/hemind0906603t
Google Scholar
[78]
M. Shibayama, Structure-mechanical property relationship of tough hydrogels, Soft Matter. 8(2012) 8030–8038.
DOI: 10.1039/c2sm25325a
Google Scholar
[79]
Y. Kaneko, S. Nakamura, K. Sakai, T. Aoyagi, A. Kikuchi, Y. Sakurai, T. Okano, Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains, Macromol. 31(1998).
DOI: 10.1021/ma971899g
Google Scholar
[80]
G. Singhvi, M. Singh, Review: In Vitro drug release characterisation models, Int. J. Pharm. Stud. Res. 2(1) (2011) 77-84.
Google Scholar
[81]
T. Vermonden, B. Klumperman, The past, present and future of hydrogels, Eur. Polym. J. 72 (2015) 341–343.
DOI: 10.1016/j.eurpolymj.2015.08.032
Google Scholar
[82]
G.C. Le Goff, R.L. Srinivas, W.A. Hill, P.S. Doyle, Hydrogel microparticles for biosensing, Eur. Polym. J. 72 (2015) 386–412.
DOI: 10.1016/j.eurpolymj.2015.02.022
Google Scholar