Hydrogel: Polymeric Smart Material in Drug Delivery

Article Preview

Abstract:

A ‘biomaterial’, recognizes some materials for biomedical applications like replacement of living system and wound stressing. ‘Biomaterials’ includes different compounds from diverse origins, like polymers, metals, ceramics and composites. Along with conventional natural polymers (polysaccharides, proteins), synthetic and biodegradable polymers like Polyvinyl alcohol, Polyvinylpyrrolidone, Polyetheleneglycol, Polylactic acid, Polyhydroxy acid are promisingly used in drug delivery, tissue engineering, biomedical sensing, skin grafting and medical adhesives. ‘Hydrogel’ a new generation biodegradable polymer typically used for pharmaceutical and medical purposes. Hydrogels are coined as super absorbent with significant function in health care, especially in wound treatment and protection. Unique characteristics features like enhanced hydrophilicity, biocompatibility, zero-toxicity and biodegradability along with soft and rubbery consistency, low interfacial tension and ‘self-healing’ properties make them compatible with living tissues. Hydrogels have been widely investigated as the carrier for drug delivery systems owing to their unusual characteristics like swelling in aqueous medium, pH and temperature sensitivity, or sensitivity towards other stimuli. Hydrogels being biocompatible materials have been recognized to function as drug protectors, especially for peptides and proteins, from in-vivo environment. In present context, development of ‘in situ’ forming systems for various biomedical applications, including drug delivery, cell encapsulation, and tissue repair are emerging. Among several typical hydrogel synthesis approaches like, solvent exchange, UV-irradiation, ionic cross-linkage, pH change, and temperature modulation, the ‘thermosensitive’ approach is advantageous since it does not require use of any organic solvents, co-polymerization agents and externally applied trigger for gelation. This review presents an overview to the advances in hydrogel based drug delivery system with some reconstructive features in the biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-62

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] http, /www. etymonline. com/index. php?l=p&p=23.

Google Scholar

[2] N. Kashyap, N. Kumar, MNV Ravi Kumar MNV, Hydrogels for Pharmaceutical and Biomedical Applications. Ther. Drug Carrier Syst. 22 (2005) 107–150.

DOI: 10.1615/critrevtherdrugcarriersyst.v22.i2.10

Google Scholar

[3] A. S. Hoffman, G. Schmer, C. Harris, W. G. Kraft, Covalent binding of biomolecules to radiation-grafted hydrogels on inert polymer surfaces, Trans. Am. Soc. Artif. Intern. Organs. 18(1972) 10–18.

DOI: 10.1097/00002480-197201000-00003

Google Scholar

[4] B. D. Ratner, A. S. Hoffman, Synthetic hydrogels for biomedical applications. In, Hydrogels for Medical and Related Applications, ACS Symposium Series Vol. 31, American Chemical Society, Washington, DC 1976, 1–36.

DOI: 10.1021/bk-1976-0031.ch001

Google Scholar

[5] N. A. Peppas, Hydrogels in Medicine and Pharmacy Vols. I–III, CRC Press, Boca Raton, F L, (1987).

Google Scholar

[6] K. Park, W.S.W. Shalaby, H. Park, Biodegradable hydrogels for drug delivery, Technomic, Lancaster, PA, (1993).

Google Scholar

[7] R.S. Harland, R.K. Prud'homme, Polyelectrolyte gels, properties, preparation, and applications, American Chemical Society, Washington, DC, 29. (1992).

Google Scholar

[8] K. Ulbrich, V. Subr, P. Podperová, M. Buresová, Synthesis of novel hydrolytically degradable hydrogels for controlled drug release, J. Controlled Release. 34 (1995) 155–165.

DOI: 10.1016/0168-3659(95)00004-r

Google Scholar

[9] A.S. Hoffman, Intelligent polymers. Controlled Drug Delivery, American Chemical Society, Washington, DC, (1997).

Google Scholar

[10] O. Wichterle, D. Lim, Hydrophillic gels for biological use, Nature. 185 (1960) 117-118.

Google Scholar

[11] K. Nguyen, J. West, Photopolymerizable hydrogels for tissue engineering applications, Biomater. 23(2002) 4307-4314.

DOI: 10.1016/s0142-9612(02)00175-8

Google Scholar

[12] N. Peppas, P. Bures, Hydrogels in pharmaceutical formulations, Eur. J. Pharm. Biopharm. 2000, 50, 27-46.

Google Scholar

[13] A. Sawhney, C. Pathak, Optimization of photopolymerizedbioerodible hydrogel properties for adhesion prevention, J. Biomed. Mat. Res, 1994, 28, 831-838.

Google Scholar

[14] S.H. Gehrke, P.I. Lee, Hydrogels for drug delivery systems. In Specialized Drug Delivery Systems 1990, 333–392, Marcel Dekker.

Google Scholar

[15] R. Dagani, Intelligent gels, Chem. Eng. News. 75(1997) 26–36.

Google Scholar

[16] J.A. Harvey, Smart materials. In Encyclopedia of Chemical Technology, John Wiley & Sons, 1995, p.502–514.

Google Scholar

[17] J. Kost, Intelligent drug delivery systems. In Encyclopaedia of Controlled Drug Delivery, John Wiley& Sons, 1999, pp-445–459.

Google Scholar

[18] A.S. Hoffman, Hydrogels for biomedical applications, Adv. Drug Deliv. Rev. 54(2002) 3-12.

Google Scholar

[19] S.H. Gehrke, Synthesis and properties of hydrogels used for drug delivery. In Transport Processes in Pharmaceutical Systems, Marcel Dekker, 2000, pp-473–546.

Google Scholar

[20] J. Rowley, G. Madlambayan, J. Faulkner, D.J. Mooney, Alginate hydrogels as synthetic extracellular matrix materials, Biomaterials. 20 (1999) 45-53.

DOI: 10.1016/s0142-9612(98)00107-0

Google Scholar

[21] Z. Chen, M. Liu, Synthesis and modification of salt-resistant superabsorbent polymers, React. Funct. Polym. 62 (1) (2005) 85–92.

Google Scholar

[22] N.A. Peppas, A.G. Mikos, Preparation methods and structure of hydrogels, Hydrogels in Medicine and Pharmacy, Vol I, CRC Press, Boca Raton, FL, 986, 1.

Google Scholar

[23] W.E. Hennink, C.F. van Nostrum, Novel crosslinking methods to design hydrogels, Adv. Drug Deliv. Rev. 54 (2002) 13-36.

DOI: 10.1016/s0169-409x(01)00240-x

Google Scholar

[24] X.Z. Shu, K.J. Zhu, Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure, Int. J. Pharm. 233(2002) 217-225.

DOI: 10.1016/s0378-5173(01)00943-7

Google Scholar

[25] J.A. Ko, H.J. Park, S.J. Hwang, J.B. Park, J.S. Lee, Preparation and characterization of chitosan microparticles intended for controlled drug delivery, Int. J. Pharm. 249(2002) 165-174.

DOI: 10.1016/s0378-5173(02)00487-8

Google Scholar

[26] V. Kudela, H.F. Mark, J.I. Kroschwitz, Encyclopedia of Polymer Science and Technology, Wiley, New York, 1985, 7, 783.

Google Scholar

[27] J. Varshosaz, M. Falamarzian, Drug diffusion mechanism through pH-sensitive hydrophobic/polyelectrolyte hydrogel membranes, Eur. J. Pharm. Biopharm. 51(2001) 235-240.

DOI: 10.1016/s0939-6411(01)00126-6

Google Scholar

[28] E.S. Gil, S.M. Hudson, Stimuli responsive polymers and their bioconjugates, Prog. Polym. Sci. 9 (12) (2004) 1173-222.

Google Scholar

[29] A.M. Lowman, N.A. Peppas, Hydrogels, Encycl. Controlled Drug Delivery. 1(1999) 397–418.

Google Scholar

[30] M. Brownlee, A. Cerami, A glucose-controlled insulin delivery system: semisynthetic insulin bound to lectin, Sci. 206 (1979) 1190–1191.

DOI: 10.1126/science.505005

Google Scholar

[31] S.W. Kim, C.M. Pai, K. Makino, L.A. Seminoff, D.L. Holmberg, J.M. Gleeson, D.E. Wilson, E.J. Mack, Self- regulated glycosylated insulin delivery, J. Control Rel. 11(1990)193–201.

DOI: 10.1016/0168-3659(90)90132-d

Google Scholar

[32] S.I. Kang, Y.H. Bae, A sulfonamide based glucose responsive hydrogel with covalently immobilized glucose oxidase and catalase, J. Control Rel. 86 (1) (2003) 115-121.

DOI: 10.1016/s0168-3659(02)00409-1

Google Scholar

[33] J. Pluta, B. Karolewicz, Hydrogels, properties and application in the technology of drug form I. The characterization hydrogels, Polim Med. 34(2) ( 2004) 3-19.

Google Scholar

[34] K. Akiyoshi, S. Kobayashi S, Schichibes, D. Mix, M. Baudys, S.W. Kim, J. Sunamato, Self assembled hydrogels nanoparticle of cholesterol bearing pullulan as a carrier of protein drugs. Complexation and stabilization of insulin, J. Control Rel. 54(3) (1998).

DOI: 10.1016/s0168-3659(98)00017-0

Google Scholar

[35] N.S. Bodor, Chemical Aspects of Drug Delivery Systems. D.R. Karsa, R.A. Stephenson, Eds; Royal Society of Chemistry: London, (1996).

Google Scholar

[36] J.E. Elliotta, M. Macdonalda, J. Niea, C.N. Bowman, Structure and swelling of poly (acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the cross-linked polymer structure, Polym. 45 (2004) 1503–1510.

DOI: 10.1016/j.polymer.2003.12.040

Google Scholar

[37] R. Pereira, A. Carvalho, D.C. Vaz, M.H. Gil, A. Mendes, P. Bártolo, Development of novel alginate based hydrogel films for wound healing applications, Int. J. Biol. Macromol. 52 (2013) 221– 230.

DOI: 10.1016/j.ijbiomac.2012.09.031

Google Scholar

[38] Y-I Shen, H-Ho, G. Song, A. E. Papa, J.A. Burke, S.W. Volk, S. Gerecht, Acellular hydrogels for regenerative burn wound healing: Translation from a porcine model, J. Invest. Dermatol. 135 (2015) 2519–2529.

DOI: 10.1038/jid.2015.182

Google Scholar

[39] N.T. Lacin, Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing, Int. J. Biol. Macromo. 67 (2014) 22–27.

Google Scholar

[40] C.Y. Gong, Q. Wu, Y. Jun, W. Dou, D. Zhang, F. Luo, X. Zhao, Y.Q. Wei, Z.Y. Qian, A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing, Biomater. 34 (2013) 6377-6387.

DOI: 10.1016/j.biomaterials.2013.05.005

Google Scholar

[41] C.Y. Tsai, L.C. Woung, J.C. Yen, P.C. Tseng, S.H. Chiou, Y.J. Sung, K.T. Liu, Y.H. Cheng, Thermosensitive chitosan-based hydrogels for sustained release of ferulic acid on corneal wound healing, Carbohydr. Polym. 135 (2016) 308–315.

DOI: 10.1016/j.carbpol.2015.08.098

Google Scholar

[42] N. Bhattarai, J. Gunn, M. Zhang, Chitosan-based hydrogels for controlled, localized drug delivery, Adv. Drug Delivery Rev. 62 (2010) 83–99.

DOI: 10.1016/j.addr.2009.07.019

Google Scholar

[43] S. Murdan, Electro-responsive drug delivery from hydrogels, J. Controlled Release. 92 (2003) 1–17.

DOI: 10.1016/s0168-3659(03)00303-1

Google Scholar

[44] D. Gulsen, A. Chauhan, Dispersion of micro emulsion drops in HEMA hydrogel: a potential ophthalmic drug delivery vehicle, Int. J. Pharm. 292 (2005) 95–117.

DOI: 10.1016/j.ijpharm.2004.11.033

Google Scholar

[45] B. Singh, V. Sharma, Design of psyllium–PVA–acrylic acid based novel hydrogels for use in antibiotic drug delivery, Int. J. Pharm. 389 (2010) 94–106.

DOI: 10.1016/j.ijpharm.2010.01.022

Google Scholar

[46] S.J. Bidarra, C.C. Barrias, Pedro L. Granja, Injectable alginate hydrogels for cell delivery in tissue engineering, Acta Biomater. 10 (2014) 1646–1662.

DOI: 10.1016/j.actbio.2013.12.006

Google Scholar

[47] B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, N.A. Peppas, Hydrogels in regenerative medicine, Adv. Mater. 21 (32–33) (2009) 3307–3329.

DOI: 10.1002/adma.200802106

Google Scholar

[48] H. Park, S.W. Kang, B.S. Kim, D.J. Mooney, K.Y. Lee, Shear-reversibly cross linked alginate hydrogels for tissue engineering, Macromol. Biosci. 9 (9) (2009) 895–901.

DOI: 10.1002/mabi.200800376

Google Scholar

[49] C.L. Salgado, M.B. Oliveira, J.F. Mano, Combinatorial cell-3D biomaterials cyto compatibility screening for tissue engineering using bio inspired super hydrophobic substrates, Integr. Biol.: Quant. Biosci. Nano Macro. 4 (3) (2012) 318–327.

DOI: 10.1039/c2ib00170e

Google Scholar

[50] W.B. Liechty D.R. Kryscio, B.V. Slaughter, N.A. Peppas, Polymers for drug delivery systems, Annu. Rev. Chem. Biomol. Eng. 1 (2010) 149–173.

DOI: 10.1146/annurev-chembioeng-073009-100847

Google Scholar

[51] T. Vermonden, R. Censi, W.E. Hennink, Hydrogels for protein delivery, Chem. Rev. 112 (5) (2012) 2853–2888.

DOI: 10.1021/cr200157d

Google Scholar

[52] Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery, Adv. Drug Deliv. Rev. 53 (3) (2001) 321–339.

DOI: 10.1016/s0169-409x(01)00203-4

Google Scholar

[53] R. Langer, Drug delivery and targeting, Nature 392 (6679 Suppl) (1998) 5–10.

Google Scholar

[54] Y. Tanaka, J.P. Gong, Y. Osada, Novel hydrogels with excellent mechanical performance, Prog. Polym. Sci. 30 (1) (2005) 1–9.

Google Scholar

[55] P. Calvert, Hydrogels for soft machines, Adv. Mater. 21 (7) (2009) 743–756.

Google Scholar

[56] P.C. Thomas, B.H. Cipriano, S.R. Raghavan, Nanoparticle-crosslinked hydrogels as a class of efficient materials for separation and ion exchange, Soft Matter. 7 (18) (2011) 8192–8197.

DOI: 10.1039/c1sm05369h

Google Scholar

[57] A.B. Imran, T. Seki, Y. Takeoka, Recent advances in hydrogels in terms of fast stimuli responsiveness and superior mechanical performance, Polym. J. 42 (11) (2010) 839–851.

DOI: 10.1038/pj.2010.87

Google Scholar

[58] D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature. 404 (6778) (2000) 588–590.

DOI: 10.1038/35007047

Google Scholar

[59] D. Kim, D.J. Beebe, Hydrogel-based reconfigurable components for microfluidic devices, Lab Chip. 7 (2) (2007) 193–198.

DOI: 10.1039/b612995a

Google Scholar

[60] H.C. Chiu, Y.W. Lin, Y.F. Huang, C.K., Chuang, C.S. Chern, Polymer vesicles containing small vesicles within interior aqueous compartments and pH-responsive transmembrane channels, Angew. Chem. Int. Ed. 47 (10) (2008) 1875–1878.

DOI: 10.1002/anie.200704078

Google Scholar

[61] F.G. Thankam, J. Muthu, Alginate–polyester comacromer based hydrogels as physiochemically and biologically favorable entities for cardiac tissue engineering, J. Colloid Interface Sci. 457 (2015) 52–61.

DOI: 10.1016/j.jcis.2015.06.034

Google Scholar

[62] A.M.S. Costa, J.F. Mano, Extremely strong and tough hydrogels as prospective candidates for tissue repair – A review, EurPolym. J. 72 (2015) 344–364.

DOI: 10.1016/j.eurpolymj.2015.07.053

Google Scholar

[63] H. Rajpurohit, P. Sharma, S. Sharma, A. Bhandari, Polymers for colon targeted drug delivery, Indian J. Pharm. Sci. 72(6) 2010 689–696.

DOI: 10.4103/0250-474x.84576

Google Scholar

[64] L. Hovgaard, H. Brøndsted, Dextran hydrogels for colon-specific drug delivery, J. Controlled Release. 36 (1995) 159-166.

DOI: 10.1016/0168-3659(95)00049-e

Google Scholar

[65] S.S. Vaghani, M.M. Patel, C.S. Satish, Synthesis and characterization of pH-sensitive hydrogel composed of carboxymethyl chitosan for colon targeted delivery of ornidazole, Carbohydr. Res. 347 (2012) 76–82.

DOI: 10.1016/j.carres.2011.04.048

Google Scholar

[66] S.N.S. Anumolu, Y. Singh, D. Gao, S. Stein, P.J. Sinko, Design and evaluation of novel fast forming pilocarpine-loaded ocular hydrogels for sustained pharmacological response, J. Control. Release. 137(2009) 152–159.

DOI: 10.1016/j.jconrel.2009.03.016

Google Scholar

[67] M. Casolaro, I. Casolaro, S. Lamponi, Stimuli-responsive hydrogels for controlled pilocarpine ocular delivery, Eur. J. Pharm. Biopharm. 80(2012) 553–561.

DOI: 10.1016/j.ejpb.2011.11.013

Google Scholar

[68] M.L. Lovett, X. Wang, T. Yucel, L. York, M. Keirstead , L. Haggerty, D.L. Kaplan, Silk hydrogels for sustained ocular delivery of anti-vascular endothelial growth factor (anti-VEGF) therapeutics, Eur. J. Pharm. Biopharm. 95 (2015) 271–278.

DOI: 10.1016/j.ejpb.2014.12.029

Google Scholar

[69] X. Xu, Y. Weng, L. Xu, H. Chen, Sustained release of avastin® from polysaccharides cross-linked hydrogels for ocular drug delivery, Int. J. Biol. Macromol. 60 (2013) 272– 276.

DOI: 10.1016/j.ijbiomac.2013.05.034

Google Scholar

[70] F.A. Maulvi, D.H. Lakdawala, A.A. Shaikh, A.R. Desai, H.H. Choksi, R.J. Vaidya, K.M. Ranch, A.R. Koli, B.A. Vyas, D.O. Shah, F.A. Maulvi, D.H. Lakdawala, A.A. Shaikh, A.R. Desai, H.H. Choksi, R.J. Vaidya, K.M. Ranch, A.R. Koli, B.A. Vyas, D.O. Shah, In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery, J. Controlled Release. 226 (2016).

DOI: 10.1016/j.jconrel.2016.02.012

Google Scholar

[71] X.Y. Li, Z. Zhang, H. Chen, Development and evaluation of fast forming nano-composite hydrogel for ocular delivery of diclofenac, Int. J. Pharm. 448 (2013) 96– 100.

DOI: 10.1016/j.ijpharm.2013.03.024

Google Scholar

[72] R. Bashir, J.Z. Hilt, O. Elibol, A. Gupta, N.A. Peppas, Micromechanical cantilever as an ultrasensitive pH microsensor, Appl. Phys. Lett. 81 (16) (2002) 3091–3093.

DOI: 10.1063/1.1514825

Google Scholar

[73] N.F. Sheppard, M.J. Lesho, P. McNally, A.S. Francomacaro, Microfabricatedconductimetric pH sensor, Sens. Actuators B 28 (2) (1995) 95–102.

DOI: 10.1016/0925-4005(94)01542-p

Google Scholar

[74] C. Ruan, K. Zeng, C.A. Grimes, A mass-sensitive pH sensor based on a stimuli-responsive polymer, Anal. Chim. Acta 497 (1–2) (2003) 123–131.

DOI: 10.1016/j.aca.2003.08.051

Google Scholar

[75] H. Maruyama, H. Matsumoto, T. Fukuda, F. Arai, Functionalized hydrogel surface patterned in a chip for local pH sensing, in: IEEE 21st Int. Conf. on Microelectromech. Syst., 2008. MEMS 2008, (2008).

DOI: 10.1109/memsys.2008.4443633

Google Scholar

[76] A. Sivashanmugam, R. Arun Kumar, M. Vishnu Priya, Shantikumar V. Nair, R. Jayakumar, An overview of injectable polymeric hydrogels for tissue engineering, Eur. Polym. J. 72 (2015) 543-565.

DOI: 10.1016/j.eurpolymj.2015.05.014

Google Scholar

[77] S.L. Tomic, M.M. Micic, S.N. Dobic, J.M. Filipovic, E.H. Suljovrujic, Smart poly (2-hyclroxycthyl methacrylate/itaconic acid) hydrogcls for biomedical application, Radiat. Phys. Chem., 79 (2010) 643-649.

DOI: 10.2298/hemind0906603t

Google Scholar

[78] M. Shibayama, Structure-mechanical property relationship of tough hydrogels, Soft Matter. 8(2012) 8030–8038.

DOI: 10.1039/c2sm25325a

Google Scholar

[79] Y. Kaneko, S. Nakamura, K. Sakai, T. Aoyagi, A. Kikuchi, Y. Sakurai, T. Okano, Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains, Macromol. 31(1998).

DOI: 10.1021/ma971899g

Google Scholar

[80] G. Singhvi, M. Singh, Review: In Vitro drug release characterisation models, Int. J. Pharm. Stud. Res. 2(1) (2011) 77-84.

Google Scholar

[81] T. Vermonden, B. Klumperman, The past, present and future of hydrogels, Eur. Polym. J. 72 (2015) 341–343.

DOI: 10.1016/j.eurpolymj.2015.08.032

Google Scholar

[82] G.C. Le Goff, R.L. Srinivas, W.A. Hill, P.S. Doyle, Hydrogel microparticles for biosensing, Eur. Polym. J. 72 (2015) 386–412.

DOI: 10.1016/j.eurpolymj.2015.02.022

Google Scholar