p.24
p.45
p.63
p.77
p.112
p.127
p.137
p.149
p.156
Microencapsulation of Natural Antioxidant Compounds Obtained from Biomass Wastes: A Review
Abstract:
Growing interest in biomass valorisation in recent years has led to an increasing research focusing on its high content in phytochemicals showing high potential health benefits related to their antioxidant, anti-inflammatory and antibacterial properties, among others. On the other hand, the demand for natural antioxidants in industry is continuously increasing to avoid the harmless character of some chemical additives and, also, to limit oxidation processes in the final material, such as in food and cosmetics; increasing consumer acceptance. However, the majority of them are usually sensitive to several factors such as oxygen, light, heat, enzymes, salts, and acid or alkali mediums which lead to losses of their activity and beneficial effects. As a consequence, microencapsulation technique has been proposed in last years as a way to enhance the stability, solubility and bioavailability of these compounds. In this chapter, phytochemical compounds classification followed by their main characteristics and properties are summarized. Also, microencapsulation techniques for phytochemicals are reviewed including processes for preparing microparticles, mainly focused on spray-drying method, for industry applications.
Info:
Periodical:
Pages:
112-126
Citation:
Online since:
October 2016
Price:
Сopyright:
© 2016 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] P. McKendry. Energy production from biomass (part 1): overview of biomass, Bioresource Technol. 83 (2002) 37-46.
[2] E. Vakkilainen, K. Kuparinen,J. Heinimö. Large Industrial Users of Energy Biomass, IEA Bioenergy Task 40 Report. (2013).
[3] European Commission webpage. https: /ec. europa. eu/energy/en/topics/renewable-energy/biomass. January (2016).
[4] R. Slade, R. Saunders, R. Gross,A. Bauen. Energy from biomass: the size of the global resource, Imperial College Centre for Energy Policy and Technology and UK Energy Research Centre, London. (2011).
[5] State of play on the sustainability of solid and gaseous biomass used for electricity, heating and cooling in the EU. European Commission. Brussels, Commission Staff Working Document. (2014).
[6] H. -S. Kwak. Nano- and Microencapsulation for Foods, First Edition, John Wiley & Sons, Ltd., 2014, 119-165.
[7] S. V. Mantilla, A. M. Manrique,P. Gauthier-Maradei. Methodology for Extraction of Phenolic Compounds of Bio-oil from Agricultural Biomass Wastes, Waste Biomass Valorization. 6 (2015) 371-383.
[8] M. I. Dias, I. Ferreira,M. F. Barreiro. Microencapsulation of bioactives for food applications, Food Funct. 6 (2015) 1035-1052.
DOI: 10.1039/c4fo01175a
[9] A. Munin,F. Edwards-Lévy. Encapsulation of Natural Polyphenolic Compounds: a Review Pharmaceutics. 3 (2011) 793-823.
[10] I. C. Arts,P. C. Hollman. Polyphenols and disease risk in epidemiologic studies, Am. J. Clin. Nutr. 81 (2005) S317-S325.
[11] K. Masisi, T. Beta,M. H. Moghadasian. Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies, Food Chem. 196 (2016) 90-97.
[12] F. M. F. Roleira, E. J. Tavares-Da-Silva, C. L. Varela, S. C. Costa, T. Silva, J. Garrido,F. Borges. Plant derived and dietary phenolic antioxidants: Anticancer properties, Food Chem. 183 (2015) 235-258.
[13] R. H. Liu. Potential Synergy of Phytochemicals in Cancer Prevention: Mechanism of Action, Am. Soc. Nutr. Sci. 134 (2004) 3479S-3485S.
[14] S. M. Mandal, D. Chakraborty,S. Dey. Phenolic acids act as signaling molecules in plant-microbe symbioses, Plant Signaling & Behavior. 5 (2010) 359-368.
[15] S. A. Heleno, A. Martins, M. J. R. P. Queiroz,I. C. F. R. Ferreira. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review, Food Chem. 173 (2015) 501-513.
[16] L. Dykes,L. W. Rooney. Phenolic compounds in cereal grains and their health benefits, Cereal Food World. 52 (2007) 105-111.
[17] M. V. Moreno-Arribas,M. C. Polo. Wine Chemistry and Biochemistry, Springer Science+Business Media, LL., 2009, 463-507.
[18] W. Routray,V. Orsat. Microwave-Assisted Extraction of Flavonoids: A Review, Food Bioprocess Technol. 5 (2011) 409-424.
[19] G. Likhtenshtein. Stilbenes. Applications in Chemistry, Life Sciences and Materials Science, WILEY-VCH Verlag GmbH & Co, KGaA, Weinheim, 2010, 1-41.
[20] I. Baczko,P. E. Light. Resveratrol and derivatives for the treatment of atrial fibrillation, Ann. N.Y. Acad. Sci. 1348 (2015) 68-74.
DOI: 10.1111/nyas.12843
[21] S. S. Kulkarni,C. Cantó. The molecular targets of resveratrol, BBA Mol. Basis Dis. 1852 (2015) 1114-1123.
[22] M. de Ligt, S. Timmers,P. Schrauwen. Resveratrol and obesity: Can resveratrol relieve metabolic disturbances?, BBA Mol. Basis Dis. 1852 (2015) 1137-1144.
[23] M. M. Poulsen, K. Fjeldborg, M. J. Ornstrup, T. N. Kjær, M. K. Nøhr,S. B. Pedersen. Resveratrol and inflammation: Challenges in translating pre-clinical findings to improved patient outcomes, BBA Mol. Basis Dis. 1852 (2015) 1124-1136.
[24] K. Skalicka-Woźniak, I. E. Orhan, G. A. Cordell, S. M. Nabavi,B. Budzyńska. Implication of coumarins towards central nervous system disorders, Pharmacol. Res. 103 (2016) 188-203.
[25] A. Thakur, R. Singla,V. Jaitak. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies, Eur. J. Med. Chem. 101 (2015) 476-495.
[26] S. Emami,S. Dadashpour. Current developments of coumarin-based anti-cancer agents in medicinal chemistry, Eur. J. Med. Chem. 102 (2015) 611-630.
[27] Z. Zou, W. Xi, Y. Hu, C. Nie,Z. Zhou. Antioxidant activity of Citrus fruits, Food Chem. 196 (2016) 885-896.
[28] D. E. Garcia, W. G. Glasser, A. Pizzi, S. P. Paczkowski,M. -P. Laborie. Modification of condensed tannins: from polyphenol chemistry to materials engineering, New J. Chem. 40 (2016) 36-49.
DOI: 10.1039/c5nj02131f
[29] P. A. Smith, J. M. McRae,K. A. Bindon. Impact of winemaking practices on the concentration and composition of tannins in red wine, Aust. J. Grape Wine Res. 21 (2015) 601-614.
DOI: 10.1111/ajgw.12188
[30] L. Catteau, F. Bambeke,J. Quetin-Leclercq. Preliminary evidences of the direct and indirect antimicrobial activity of 12 plants used in traditional medicine in Africa, Phytoch. Rev. 14 (2015) 975-991.
[31] I. Zafar, R. K. Sharma, S. Mujawar,S. Choudhary. Terminalia arjuna: Alternative treatment for cardiovascular diseases, Int. J. Pharm. Sci. Rev. Res. 35 (2015) 52-56.
[32] M. M. Cascaes, G. M. S. P. Guilhon, E. H. de Aguiar Andrade, M. das Graças Bichara Zoghbi,L. da Silva Santos. Constituents and pharmacological activities of Myrcia (Myrtaceae): A review of an aromatic and medicinal group of plants, Int. J. Mol. Sci. 16 (2015).
[33] W. Chingwaru, J. Vidmar,P. T. Kapewangolo. The Potential of Sub-Saharan African Plants in the Management of Human Immunodeficiency Virus Infections: A Review, Phytother. Res. 29 (2015) 1452-1487.
DOI: 10.1002/ptr.5433
[34] V. Mlambo,C. Mapiye. Towards household food and nutrition security in semi-arid areas: What role for condensed tannin-rich ruminant feedstuffs?, Food Res. Int. 76, Part 4 (2015) 953-961.
[35] J. Gómez-Estaca, C. López-de-Dicastillo, P. Hernández-Muñoz, R. Catalá,R. Gavara. Advances in antioxidant active food packaging, Trends Food Sci. Technol. 35 (2014) 42-51.
[36] W. Torres, H. Soto, E. Peralta, J. L. Cardenas,J. M. Ezquerra. Effect of a low-density polyethylene film containing butylated hydroxytoluene on lipid oxidation and protein quality of sierra fish (Scomberomorus sierra) muscle during frozen storage, J. Agric. Food Chem. 55 (2007).
DOI: 10.1021/jf070418h
[37] Y. Byun, Y. T. Kim,S. Whiteside. Characterization of an antioxidant polylactic acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder, J. Food Eng. 100 (2010) 239-244.
[38] A. Moure, J. M. Cruz, D. Franco, J. M. Dominguez, J. Sinerio, H. Dominguez, M. J. Nunez,J. C. Prajo. Natural Antioxidants from Residual Sources, Food Chem. 72 (2001) 145-171.
[39] A. Silva, M. Ihl, P. J. A. Sobral, M. C. Gómez,V. Bifani. Natural Additives in Bioactive Edible Films and Coatings: Functionality and Applications in Foods, Food Eng. Rev. 5 (2013) 200-216.
[40] R. Amorati, M. C. Foti,L. Valgimigli. Antioxidant Activity of Essential Oils, J. Agric. Food Chem. 61 (2013) 10835-10847.
DOI: 10.1021/jf403496k
[41] A. Valdes, A. C. Mellinas, M. Ramos, N. Burgos, A. Jimenez,M. C. Garrigos. Use of herbs, spices and their bioactive compounds in active food packaging, RSC Adv. 5 (2015) 40324-40335.
DOI: 10.1039/c4ra17286h
[42] F. d. S. Grasel, M. F. Ferrão,C. R. Wolf. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis, Spectrochim. Acta A Mol. Biomol. Spectrosc. 153 (2016) 94-101.
[43] A. Valdés, A. C. Mellinas, M. Ramos, M. C. Garrigós,A. Jiménez. Natural additives and agricultural wastes in biopolymer formulations for food packaging, Front. Chem. 2 (2014) 6.
[44] S. Y. J. Sim, J. W. Ng, W. K. Ng, C. G. Forde,C. J. Henry. Plant polyphenols to enhance the nutritional and sensory properties of chocolates, Food Chem. 200 (2016) 46-54.
[45] P. S. Calabrò, L. Pontoni, I. Porqueddu, R. Greco, F. Pirozzi,F. Malpei. Effect of the concentration of essential oil on orange peel waste biomethanization: Preliminary batch results, Waste Manage. 48 (2016) 440-447.
[46] L. S. Kuck,C. P. Z. Noreña. Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents, Food Chem. 194 (2016) 569-576.
[47] C. Pagliarulo, V. De Vito, G. Picariello, R. Colicchio, G. Pastore, P. Salvatore,M. G. Volpe. Inhibitory effect of pomegranate (Punica granatum L. ) polyphenol extracts on the bacterial growth and survival of clinical isolates of pathogenic Staphylococcus aureus and Escherichia coli, Food Chem. 190 (2016).
[48] J. -H. Li, J. Miao, J. -L. Wu, S. -F. Chen,Q. -Q. Zhang. Preparation and characterization of active gelatin-based films incorporated with natural antioxidants, Food Hydrocolloids. 37 (2014) 166-173.
[49] M. Jouki, F. T. Yazdi, S. A. Mortazavi,A. Koocheki. Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties, Food Hydrocolloids. 36 (2014) 9-19.
[50] M. d. M. Castro-López, J. M. López-Vilariño,M. V. González-Rodríguez. Analytical determination of flavonoids aimed to analysis of natural samples and active packaging applications, Food Chem. 150 (2014) 119-127.
[51] R. Touati, S. A. O. Santos, S. M. Rocha, K. Belhamel,A. J. D. Silvestre. The potential of cork from Quercus suber L. grown in Algeria as a source of bioactive lipophilic and phenolic compounds, Ind. Crops Prod. 76 (2015) 936-945.
[52] M. Topal, H. Gocer, F. Topal, P. Kalin, L. P. Köse, I. Gulçin, K. C. Çakmak, M. Küçük, L. Durmaz, A. C. Gören,S. H. Alwasel. Antioxidant, antiradical, and anticholinergic properties of cynarin purified from the Illyrian thistle (Onopordum illyricum L. ), J. Enz. Inhib. Med. Chem. 31 (2016).
[53] A. Dube, K. Ng, J. A. Nicolazzo,I. Larson. Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution, Food Chem. 122 (2010) 662-667.
[54] R. Sharma,R. B. Singh. Open Nutraceuticals J. . 3 (Bioactive foods and nutraceutical supplementation criteria in cardiovascular protection) 141-153.
[55] R. Murugesan,V. Orsat. Spray Drying for the Production of Nutraceutical Ingredients—A Review, Food Bioproc. Technol. 5 (2011) 3-14.
[56] K. Kandansamy,P. D. Somasundaram. Microencapsulation of Colors by Spray Drying - A Review, Int. J. Food Eng. 8 (2012) 1-15.
[57] Scopus database website. http: /www. scopus. es. February (2016).
[58] V. Đorđević, B. Balanč, A. Belščak-Cvitanović, S. Lević, K. Trifković, A. Kalušević, I. Kostić, D. Komes, B. Bugarski,V. Nedović. Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds, Food Eng. Rev. 7 (2014) 452-490.
[59] A. Poshadri,A. Kuna. Microencapsulation technology: a review, J. Res. Angrau. 38 (2010) 86-102.
[60] G. Davidov-Pardo, I. Arozarena,M. Marín-Arroyo. Optimization of a wall material formulation to microencapsulate a grape seed extract using a mixture design of experiments, Food Bioproc. Technol. 6 (2013) 941-951.
[61] B. N. Estevinho, F. Rocha, L. Santos,A. Alves. Microencapsulation with chitosan by spray drying for industry applications – A review, Trends Food Sci. Technol. 31 (2013) 138-155.
[62] L. D. Daza, A. Fujita, C. S. Fávaro-Trindade, J. N. Rodrigues-Ract, D. Granato,M. I. Genovese. Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC. ) fruit extracts, Food Bioprocess Technol. 97 (2016).
[63] P. I. Silva, P. C. Stringheta, R. F. Teófilo,I. R. N. de Oliveira. Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses, Journal of Food Engineering. 117 (2013).
[64] M. Çam, N. C. İçyer,F. Erdoğan. Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development, LWT - Food Science and Technology. 55 (2014) 117-123.
[65] A. M. Goula,K. G. Adamopoulos. A method for pomegranate seed application in food industries: Seed oil encapsulation, Food Bioprod. Proc. 90 (2012) 639-652.
[66] L. Liu, C. Guo, Z. Fan, X. Wang,P. Xue. Microencapsulation of pomegranate seed oil, J. Chinese Cereals Oils Assoc. 30 (2015) 43-49.
[67] H. Sahin-Nadeem,M. Afşin Özen. Physical properties and fatty acid composition of pomegranate seed oil microcapsules prepared by using starch derivatives/whey protein blends, Eur. J. Lipid Sci. Technol. 116 (2014) 847-856.
[68] M. Igual, S. Ramires, L. H. Mosquera,N. Martínez-Navarrete. Optimization of spray drying conditions for lulo (Solanum quitoense L. ) pulp, Powder Technol. 256 (2014) 233-238.
[69] M. C. Otálora, J. G. Carriazo, L. Iturriaga, M. A. Nazareno,C. Osorio. Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents, Food Chem. 187 (2015).
[70] F. P. Flores, R. K. Singh, W. L. Kerr, R. B. Pegg,F. Kong. Total phenolics content and antioxidant capacities of microencapsulated blueberry anthocyanins during in vitro digestion, Food Chem. 153 (2014) 272-278.
[71] A. Romo-Hualde, A. I. Yetano-Cunchillos, C. González-Ferrero, M. J. Sáiz-Abajo,C. J. González-Navarro. Supercritical fluid extraction and microencapsulation of bioactive compounds from red pepper (Capsicum annum L. ) by-products, Food Chem. 133 (2012).
[72] M. C. Silva, V. B. d. Souza, M. Thomazini, E. R. da Silva, T. Smaniotto, R. A. d. Carvalho, M. I. Genovese,C. S. Favaro-Trindade. Use of the jabuticaba (Myrciaria cauliflora) depulping residue to produce a natural pigment powder with functional properties, LWT - Food Sci. Technol. 55 (2014).
[73] S. -K. Ng, P. -Y. Wong, C. -P. Tan, K. Long,K. -L. Nyam. Influence of the inlet air temperature on the microencapsulation of kenaf (Hibiscus cannabinus L. ) seed oil, Eur. J. Lipid Sci. Technol. 115 (2013) 1309-1318.
[74] D. Chatterjee, P. Bhattacharjee, G. Gopal Satpati,R. Pal. Spray Dried Extract of Phormidium valderianum as a Promising Source of Natural Antioxidant, Int. J. Food Sci. 2014 (2014) 1-8.
DOI: 10.1155/2014/897497
[75] F. Sansone, T. Mencherini, P. Picerno, T. Esposito, P. Del Gaudio, P. Russo, G. Pepe, M. Lauro,R. Aquino. Microencapsulation by spray drying of Lannea microcarpa extract: Technological characteristics and antioxidant activity, J. Pharm. Pharmacogn. Res. 2 (2014).
[76] N. W. Suriani,M. L. S. Taulu. The characteristics of omega-3 fatty acids concentrated microcapsules from wastewater byproduct of tuna canning (Thunnus sp. ), Int. J. Chem. Tech. Res. 8 (2015) 235-243.
[77] V. B. de Souza, M. Thomazini, J. C. d. C. Balieiro,C. S. Fávaro-Trindade. Effect of spray drying on the physicochemical properties and color stability of the powdered pigment obtained from vinification byproducts of the Bordo grape (Vitis labrusca), Food Bioprod. Proc. 93 (2015).
[78] V. B. d. Souza, A. Fujita, M. Thomazini, E. R. da Silva, J. F. Lucon Jr, M. I. Genovese,C. S. Favaro-Trindade. Functional properties and stability of spray-dried pigments from Bordo grape (Vitis labrusca) winemaking pomace, Food Chem. 164 (2014).
[79] A. M. Bakowska-Barczak,P. P. Kolodziejczyk. Black currant polyphenols: their storage stability and microencapsulation, Ind. Crops Prod. 34 (2011) 1301-1309.
[80] D. B. Rodriguez-Amaya. Natural food pigments and colorants, Curr. Opin. Food Sci. 7 (2016) 20-26.
[81] K. G. H. Desai,H. J. Park. Recent developments in microencapsulation of food ingredients, Drying Technol. 23 (2005) 1361-1394.
[82] L. Stoll, T. M. H. Costa, A. Jablonski, S. H. Flôres,A. Rios. Microencapsulation of Anthocyanins with Different Wall Materials and Its Application in Active Biodegradable Films, Food Bioproc. Technol. 9 (2015) 172-181.
[83] M. Ganje, S. M. Jafari, A. Dusti, D. Dehnad, M. Amanjani,V. Ghanbari. Modeling quality changes in tomato paste containing microencapsulated olive leaf extract by accelerated shelf life testing, Food Bioproc. Technol. 97 (2016) 12-19.
[84] M. Taghvaei, S. M. Jafari, A. S. Mahoonak, A. M. Nikoo, N. Rahmanian, J. Hajitabar,N. Meshginfar. The effect of natural antioxidants extracted from plant and animal resources on the oxidative stability of soybean oil, LWT - Food Science and Technology. 56 (2014).
[85] P. N. Ezhilarasi, D. Indrani, B. S. Jena,C. Anandharamakrishnan. Freeze drying technique for microencapsulation of Garcinia fruit extract and its effect on bread quality, Journal of Food Engineering. 117 (2013) 513-520.
[86] S. -M. Jafari, K. Mahdavi-Khazaei,A. Hemmati-Kakhki. Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying, Carbohyd. Polym. 140 (2016) 20-25.
[87] K. Mahdavee Khazaei, S. M. Jafari, M. Ghorbani,A. Hemmati Kakhki. Application of maltodextrin and gum Arabic in microencapsulation of saffron petal's anthocyanins and evaluating their storage stability and color, Carbohyd. Polym. 105 (2014).
[88] A. Belščak-Cvitanović, R. Stojanović, V. Manojlović, D. Komes, I. J. Cindrić, V. Nedović,B. Bugarski. Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate–chitosan system enhanced with ascorbic acid by electrostatic extrusion, Food Res. Int. 44 (2011).
[89] D. T. Santos, J. Q. Albarelli, M. M. Beppu,M. A. A. Meireles. Stabilization of anthocyanin extract from jabuticaba skins by encapsulation using supercritical CO2 as solvent, Food Research International. 50 (2013) 617-624.
[90] D. T. Santos,M. A. A. Meireles. Carotenoid pigments encapsulation: Fundamentals, techniques and recent trends., Open Chem. Eng. J. 4 (2010) 42-50.
[91] W. Zam, G. Bashour, W. Abdelwahed,W. Khayata. Alginate-pomegranate peels' polyphenols beads: Effects of formulation parameters on loading efficiency, Brazilian J. Pharma. Sci. 50 (2014) 741-748.
[92] C. Kropat, M. Betz, U. Kulozik, S. Leick, H. Rehage, U. Boettler, N. Teller,D. Marko. Effect of Microformulation on the Bioactivity of an Anthocyanin-rich Bilberry Pomace Extract (Vaccinium myrtillus L. ) in Vitro, J. Agric. Food Chem. 61 (2013).
DOI: 10.1021/jf305180j