Microencapsulation of Natural Antioxidant Compounds Obtained from Biomass Wastes: A Review

Article Preview

Abstract:

Growing interest in biomass valorisation in recent years has led to an increasing research focusing on its high content in phytochemicals showing high potential health benefits related to their antioxidant, anti-inflammatory and antibacterial properties, among others. On the other hand, the demand for natural antioxidants in industry is continuously increasing to avoid the harmless character of some chemical additives and, also, to limit oxidation processes in the final material, such as in food and cosmetics; increasing consumer acceptance. However, the majority of them are usually sensitive to several factors such as oxygen, light, heat, enzymes, salts, and acid or alkali mediums which lead to losses of their activity and beneficial effects. As a consequence, microencapsulation technique has been proposed in last years as a way to enhance the stability, solubility and bioavailability of these compounds. In this chapter, phytochemical compounds classification followed by their main characteristics and properties are summarized. Also, microencapsulation techniques for phytochemicals are reviewed including processes for preparing microparticles, mainly focused on spray-drying method, for industry applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

112-126

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. McKendry. Energy production from biomass (part 1): overview of biomass, Bioresource Technol. 83 (2002) 37-46.

DOI: 10.1016/s0960-8524(01)00118-3

Google Scholar

[2] E. Vakkilainen, K. Kuparinen,J. Heinimö. Large Industrial Users of Energy Biomass, IEA Bioenergy Task 40 Report. (2013).

Google Scholar

[3] European Commission webpage. https: /ec. europa. eu/energy/en/topics/renewable-energy/biomass. January (2016).

Google Scholar

[4] R. Slade, R. Saunders, R. Gross,A. Bauen. Energy from biomass: the size of the global resource, Imperial College Centre for Energy Policy and Technology and UK Energy Research Centre, London. (2011).

Google Scholar

[5] State of play on the sustainability of solid and gaseous biomass used for electricity, heating and cooling in the EU. European Commission. Brussels, Commission Staff Working Document. (2014).

Google Scholar

[6] H. -S. Kwak. Nano- and Microencapsulation for Foods, First Edition, John Wiley & Sons, Ltd., 2014, 119-165.

Google Scholar

[7] S. V. Mantilla, A. M. Manrique,P. Gauthier-Maradei. Methodology for Extraction of Phenolic Compounds of Bio-oil from Agricultural Biomass Wastes, Waste Biomass Valorization. 6 (2015) 371-383.

DOI: 10.1007/s12649-015-9361-8

Google Scholar

[8] M. I. Dias, I. Ferreira,M. F. Barreiro. Microencapsulation of bioactives for food applications, Food Funct. 6 (2015) 1035-1052.

DOI: 10.1039/c4fo01175a

Google Scholar

[9] A. Munin,F. Edwards-Lévy. Encapsulation of Natural Polyphenolic Compounds: a Review Pharmaceutics. 3 (2011) 793-823.

DOI: 10.3390/pharmaceutics3040793

Google Scholar

[10] I. C. Arts,P. C. Hollman. Polyphenols and disease risk in epidemiologic studies, Am. J. Clin. Nutr. 81 (2005) S317-S325.

Google Scholar

[11] K. Masisi, T. Beta,M. H. Moghadasian. Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies, Food Chem. 196 (2016) 90-97.

DOI: 10.1016/j.foodchem.2015.09.021

Google Scholar

[12] F. M. F. Roleira, E. J. Tavares-Da-Silva, C. L. Varela, S. C. Costa, T. Silva, J. Garrido,F. Borges. Plant derived and dietary phenolic antioxidants: Anticancer properties, Food Chem. 183 (2015) 235-258.

DOI: 10.1016/j.foodchem.2015.03.039

Google Scholar

[13] R. H. Liu. Potential Synergy of Phytochemicals in Cancer Prevention: Mechanism of Action, Am. Soc. Nutr. Sci. 134 (2004) 3479S-3485S.

DOI: 10.1093/jn/134.12.3479s

Google Scholar

[14] S. M. Mandal, D. Chakraborty,S. Dey. Phenolic acids act as signaling molecules in plant-microbe symbioses, Plant Signaling & Behavior. 5 (2010) 359-368.

DOI: 10.4161/psb.5.4.10871

Google Scholar

[15] S. A. Heleno, A. Martins, M. J. R. P. Queiroz,I. C. F. R. Ferreira. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review, Food Chem. 173 (2015) 501-513.

DOI: 10.1016/j.foodchem.2014.10.057

Google Scholar

[16] L. Dykes,L. W. Rooney. Phenolic compounds in cereal grains and their health benefits, Cereal Food World. 52 (2007) 105-111.

DOI: 10.1094/cfw-52-3-0105

Google Scholar

[17] M. V. Moreno-Arribas,M. C. Polo. Wine Chemistry and Biochemistry, Springer Science+Business Media, LL., 2009, 463-507.

Google Scholar

[18] W. Routray,V. Orsat. Microwave-Assisted Extraction of Flavonoids: A Review, Food Bioprocess Technol. 5 (2011) 409-424.

DOI: 10.1007/s11947-011-0573-z

Google Scholar

[19] G. Likhtenshtein. Stilbenes. Applications in Chemistry, Life Sciences and Materials Science, WILEY-VCH Verlag GmbH & Co, KGaA, Weinheim, 2010, 1-41.

Google Scholar

[20] I. Baczko,P. E. Light. Resveratrol and derivatives for the treatment of atrial fibrillation, Ann. N.Y. Acad. Sci. 1348 (2015) 68-74.

DOI: 10.1111/nyas.12843

Google Scholar

[21] S. S. Kulkarni,C. Cantó. The molecular targets of resveratrol, BBA Mol. Basis Dis. 1852 (2015) 1114-1123.

DOI: 10.1016/j.bbadis.2014.10.005

Google Scholar

[22] M. de Ligt, S. Timmers,P. Schrauwen. Resveratrol and obesity: Can resveratrol relieve metabolic disturbances?, BBA Mol. Basis Dis. 1852 (2015) 1137-1144.

DOI: 10.1016/j.bbadis.2014.11.012

Google Scholar

[23] M. M. Poulsen, K. Fjeldborg, M. J. Ornstrup, T. N. Kjær, M. K. Nøhr,S. B. Pedersen. Resveratrol and inflammation: Challenges in translating pre-clinical findings to improved patient outcomes, BBA Mol. Basis Dis. 1852 (2015) 1124-1136.

DOI: 10.1016/j.bbadis.2014.12.024

Google Scholar

[24] K. Skalicka-Woźniak, I. E. Orhan, G. A. Cordell, S. M. Nabavi,B. Budzyńska. Implication of coumarins towards central nervous system disorders, Pharmacol. Res. 103 (2016) 188-203.

DOI: 10.1016/j.phrs.2015.11.023

Google Scholar

[25] A. Thakur, R. Singla,V. Jaitak. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies, Eur. J. Med. Chem. 101 (2015) 476-495.

DOI: 10.1016/j.ejmech.2015.07.010

Google Scholar

[26] S. Emami,S. Dadashpour. Current developments of coumarin-based anti-cancer agents in medicinal chemistry, Eur. J. Med. Chem. 102 (2015) 611-630.

DOI: 10.1016/j.ejmech.2015.08.033

Google Scholar

[27] Z. Zou, W. Xi, Y. Hu, C. Nie,Z. Zhou. Antioxidant activity of Citrus fruits, Food Chem. 196 (2016) 885-896.

DOI: 10.1016/j.foodchem.2015.09.072

Google Scholar

[28] D. E. Garcia, W. G. Glasser, A. Pizzi, S. P. Paczkowski,M. -P. Laborie. Modification of condensed tannins: from polyphenol chemistry to materials engineering, New J. Chem. 40 (2016) 36-49.

DOI: 10.1039/c5nj02131f

Google Scholar

[29] P. A. Smith, J. M. McRae,K. A. Bindon. Impact of winemaking practices on the concentration and composition of tannins in red wine, Aust. J. Grape Wine Res. 21 (2015) 601-614.

DOI: 10.1111/ajgw.12188

Google Scholar

[30] L. Catteau, F. Bambeke,J. Quetin-Leclercq. Preliminary evidences of the direct and indirect antimicrobial activity of 12 plants used in traditional medicine in Africa, Phytoch. Rev. 14 (2015) 975-991.

DOI: 10.1007/s11101-015-9437-x

Google Scholar

[31] I. Zafar, R. K. Sharma, S. Mujawar,S. Choudhary. Terminalia arjuna: Alternative treatment for cardiovascular diseases, Int. J. Pharm. Sci. Rev. Res. 35 (2015) 52-56.

Google Scholar

[32] M. M. Cascaes, G. M. S. P. Guilhon, E. H. de Aguiar Andrade, M. das Graças Bichara Zoghbi,L. da Silva Santos. Constituents and pharmacological activities of Myrcia (Myrtaceae): A review of an aromatic and medicinal group of plants, Int. J. Mol. Sci. 16 (2015).

DOI: 10.3390/ijms161023881

Google Scholar

[33] W. Chingwaru, J. Vidmar,P. T. Kapewangolo. The Potential of Sub-Saharan African Plants in the Management of Human Immunodeficiency Virus Infections: A Review, Phytother. Res. 29 (2015) 1452-1487.

DOI: 10.1002/ptr.5433

Google Scholar

[34] V. Mlambo,C. Mapiye. Towards household food and nutrition security in semi-arid areas: What role for condensed tannin-rich ruminant feedstuffs?, Food Res. Int. 76, Part 4 (2015) 953-961.

DOI: 10.1016/j.foodres.2015.04.011

Google Scholar

[35] J. Gómez-Estaca, C. López-de-Dicastillo, P. Hernández-Muñoz, R. Catalá,R. Gavara. Advances in antioxidant active food packaging, Trends Food Sci. Technol. 35 (2014) 42-51.

DOI: 10.1016/j.tifs.2013.10.008

Google Scholar

[36] W. Torres, H. Soto, E. Peralta, J. L. Cardenas,J. M. Ezquerra. Effect of a low-density polyethylene film containing butylated hydroxytoluene on lipid oxidation and protein quality of sierra fish (Scomberomorus sierra) muscle during frozen storage, J. Agric. Food Chem. 55 (2007).

DOI: 10.1021/jf070418h

Google Scholar

[37] Y. Byun, Y. T. Kim,S. Whiteside. Characterization of an antioxidant polylactic acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder, J. Food Eng. 100 (2010) 239-244.

DOI: 10.1016/j.jfoodeng.2010.04.005

Google Scholar

[38] A. Moure, J. M. Cruz, D. Franco, J. M. Dominguez, J. Sinerio, H. Dominguez, M. J. Nunez,J. C. Prajo. Natural Antioxidants from Residual Sources, Food Chem. 72 (2001) 145-171.

DOI: 10.1016/s0308-8146(00)00223-5

Google Scholar

[39] A. Silva, M. Ihl, P. J. A. Sobral, M. C. Gómez,V. Bifani. Natural Additives in Bioactive Edible Films and Coatings: Functionality and Applications in Foods, Food Eng. Rev. 5 (2013) 200-216.

DOI: 10.1007/s12393-013-9072-5

Google Scholar

[40] R. Amorati, M. C. Foti,L. Valgimigli. Antioxidant Activity of Essential Oils, J. Agric. Food Chem. 61 (2013) 10835-10847.

DOI: 10.1021/jf403496k

Google Scholar

[41] A. Valdes, A. C. Mellinas, M. Ramos, N. Burgos, A. Jimenez,M. C. Garrigos. Use of herbs, spices and their bioactive compounds in active food packaging, RSC Adv. 5 (2015) 40324-40335.

DOI: 10.1039/c4ra17286h

Google Scholar

[42] F. d. S. Grasel, M. F. Ferrão,C. R. Wolf. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis, Spectrochim. Acta A Mol. Biomol. Spectrosc. 153 (2016) 94-101.

DOI: 10.1016/j.saa.2015.08.020

Google Scholar

[43] A. Valdés, A. C. Mellinas, M. Ramos, M. C. Garrigós,A. Jiménez. Natural additives and agricultural wastes in biopolymer formulations for food packaging, Front. Chem. 2 (2014) 6.

DOI: 10.3389/fchem.2014.00006

Google Scholar

[44] S. Y. J. Sim, J. W. Ng, W. K. Ng, C. G. Forde,C. J. Henry. Plant polyphenols to enhance the nutritional and sensory properties of chocolates, Food Chem. 200 (2016) 46-54.

DOI: 10.1016/j.foodchem.2015.12.092

Google Scholar

[45] P. S. Calabrò, L. Pontoni, I. Porqueddu, R. Greco, F. Pirozzi,F. Malpei. Effect of the concentration of essential oil on orange peel waste biomethanization: Preliminary batch results, Waste Manage. 48 (2016) 440-447.

DOI: 10.1016/j.wasman.2015.10.032

Google Scholar

[46] L. S. Kuck,C. P. Z. Noreña. Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents, Food Chem. 194 (2016) 569-576.

DOI: 10.1016/j.foodchem.2015.08.066

Google Scholar

[47] C. Pagliarulo, V. De Vito, G. Picariello, R. Colicchio, G. Pastore, P. Salvatore,M. G. Volpe. Inhibitory effect of pomegranate (Punica granatum L. ) polyphenol extracts on the bacterial growth and survival of clinical isolates of pathogenic Staphylococcus aureus and Escherichia coli, Food Chem. 190 (2016).

DOI: 10.1016/j.foodchem.2015.06.028

Google Scholar

[48] J. -H. Li, J. Miao, J. -L. Wu, S. -F. Chen,Q. -Q. Zhang. Preparation and characterization of active gelatin-based films incorporated with natural antioxidants, Food Hydrocolloids. 37 (2014) 166-173.

DOI: 10.1016/j.foodhyd.2013.10.015

Google Scholar

[49] M. Jouki, F. T. Yazdi, S. A. Mortazavi,A. Koocheki. Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties, Food Hydrocolloids. 36 (2014) 9-19.

DOI: 10.1016/j.foodhyd.2013.08.030

Google Scholar

[50] M. d. M. Castro-López, J. M. López-Vilariño,M. V. González-Rodríguez. Analytical determination of flavonoids aimed to analysis of natural samples and active packaging applications, Food Chem. 150 (2014) 119-127.

DOI: 10.1016/j.foodchem.2013.10.156

Google Scholar

[51] R. Touati, S. A. O. Santos, S. M. Rocha, K. Belhamel,A. J. D. Silvestre. The potential of cork from Quercus suber L. grown in Algeria as a source of bioactive lipophilic and phenolic compounds, Ind. Crops Prod. 76 (2015) 936-945.

DOI: 10.1016/j.indcrop.2015.07.074

Google Scholar

[52] M. Topal, H. Gocer, F. Topal, P. Kalin, L. P. Köse, I. Gulçin, K. C. Çakmak, M. Küçük, L. Durmaz, A. C. Gören,S. H. Alwasel. Antioxidant, antiradical, and anticholinergic properties of cynarin purified from the Illyrian thistle (Onopordum illyricum L. ), J. Enz. Inhib. Med. Chem. 31 (2016).

DOI: 10.3109/14756366.2015.1018244

Google Scholar

[53] A. Dube, K. Ng, J. A. Nicolazzo,I. Larson. Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution, Food Chem. 122 (2010) 662-667.

DOI: 10.1016/j.foodchem.2010.03.027

Google Scholar

[54] R. Sharma,R. B. Singh. Open Nutraceuticals J. . 3 (Bioactive foods and nutraceutical supplementation criteria in cardiovascular protection) 141-153.

DOI: 10.2174/18763960010030300141

Google Scholar

[55] R. Murugesan,V. Orsat. Spray Drying for the Production of Nutraceutical Ingredients—A Review, Food Bioproc. Technol. 5 (2011) 3-14.

DOI: 10.1007/s11947-011-0638-z

Google Scholar

[56] K. Kandansamy,P. D. Somasundaram. Microencapsulation of Colors by Spray Drying - A Review, Int. J. Food Eng. 8 (2012) 1-15.

DOI: 10.1515/1556-3758.2647

Google Scholar

[57] Scopus database website. http: /www. scopus. es. February (2016).

Google Scholar

[58] V. Đorđević, B. Balanč, A. Belščak-Cvitanović, S. Lević, K. Trifković, A. Kalušević, I. Kostić, D. Komes, B. Bugarski,V. Nedović. Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds, Food Eng. Rev. 7 (2014) 452-490.

DOI: 10.1007/s12393-014-9106-7

Google Scholar

[59] A. Poshadri,A. Kuna. Microencapsulation technology: a review, J. Res. Angrau. 38 (2010) 86-102.

Google Scholar

[60] G. Davidov-Pardo, I. Arozarena,M. Marín-Arroyo. Optimization of a wall material formulation to microencapsulate a grape seed extract using a mixture design of experiments, Food Bioproc. Technol. 6 (2013) 941-951.

DOI: 10.1007/s11947-012-0848-z

Google Scholar

[61] B. N. Estevinho, F. Rocha, L. Santos,A. Alves. Microencapsulation with chitosan by spray drying for industry applications – A review, Trends Food Sci. Technol. 31 (2013) 138-155.

DOI: 10.1016/j.tifs.2013.04.001

Google Scholar

[62] L. D. Daza, A. Fujita, C. S. Fávaro-Trindade, J. N. Rodrigues-Ract, D. Granato,M. I. Genovese. Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC. ) fruit extracts, Food Bioprocess Technol. 97 (2016).

DOI: 10.1016/j.fbp.2015.10.001

Google Scholar

[63] P. I. Silva, P. C. Stringheta, R. F. Teófilo,I. R. N. de Oliveira. Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses, Journal of Food Engineering. 117 (2013).

DOI: 10.1016/j.jfoodeng.2012.08.039

Google Scholar

[64] M. Çam, N. C. İçyer,F. Erdoğan. Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development, LWT - Food Science and Technology. 55 (2014) 117-123.

DOI: 10.1016/j.lwt.2013.09.011

Google Scholar

[65] A. M. Goula,K. G. Adamopoulos. A method for pomegranate seed application in food industries: Seed oil encapsulation, Food Bioprod. Proc. 90 (2012) 639-652.

DOI: 10.1016/j.fbp.2012.06.001

Google Scholar

[66] L. Liu, C. Guo, Z. Fan, X. Wang,P. Xue. Microencapsulation of pomegranate seed oil, J. Chinese Cereals Oils Assoc. 30 (2015) 43-49.

Google Scholar

[67] H. Sahin-Nadeem,M. Afşin Özen. Physical properties and fatty acid composition of pomegranate seed oil microcapsules prepared by using starch derivatives/whey protein blends, Eur. J. Lipid Sci. Technol. 116 (2014) 847-856.

DOI: 10.1002/ejlt.201300355

Google Scholar

[68] M. Igual, S. Ramires, L. H. Mosquera,N. Martínez-Navarrete. Optimization of spray drying conditions for lulo (Solanum quitoense L. ) pulp, Powder Technol. 256 (2014) 233-238.

DOI: 10.1016/j.powtec.2014.02.003

Google Scholar

[69] M. C. Otálora, J. G. Carriazo, L. Iturriaga, M. A. Nazareno,C. Osorio. Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents, Food Chem. 187 (2015).

DOI: 10.1016/j.foodchem.2015.04.090

Google Scholar

[70] F. P. Flores, R. K. Singh, W. L. Kerr, R. B. Pegg,F. Kong. Total phenolics content and antioxidant capacities of microencapsulated blueberry anthocyanins during in vitro digestion, Food Chem. 153 (2014) 272-278.

DOI: 10.1016/j.foodchem.2013.12.063

Google Scholar

[71] A. Romo-Hualde, A. I. Yetano-Cunchillos, C. González-Ferrero, M. J. Sáiz-Abajo,C. J. González-Navarro. Supercritical fluid extraction and microencapsulation of bioactive compounds from red pepper (Capsicum annum L. ) by-products, Food Chem. 133 (2012).

DOI: 10.1016/j.foodchem.2012.01.062

Google Scholar

[72] M. C. Silva, V. B. d. Souza, M. Thomazini, E. R. da Silva, T. Smaniotto, R. A. d. Carvalho, M. I. Genovese,C. S. Favaro-Trindade. Use of the jabuticaba (Myrciaria cauliflora) depulping residue to produce a natural pigment powder with functional properties, LWT - Food Sci. Technol. 55 (2014).

DOI: 10.1016/j.lwt.2013.08.026

Google Scholar

[73] S. -K. Ng, P. -Y. Wong, C. -P. Tan, K. Long,K. -L. Nyam. Influence of the inlet air temperature on the microencapsulation of kenaf (Hibiscus cannabinus L. ) seed oil, Eur. J. Lipid Sci. Technol. 115 (2013) 1309-1318.

DOI: 10.1002/ejlt.201200436

Google Scholar

[74] D. Chatterjee, P. Bhattacharjee, G. Gopal Satpati,R. Pal. Spray Dried Extract of Phormidium valderianum as a Promising Source of Natural Antioxidant, Int. J. Food Sci. 2014 (2014) 1-8.

DOI: 10.1155/2014/897497

Google Scholar

[75] F. Sansone, T. Mencherini, P. Picerno, T. Esposito, P. Del Gaudio, P. Russo, G. Pepe, M. Lauro,R. Aquino. Microencapsulation by spray drying of Lannea microcarpa extract: Technological characteristics and antioxidant activity, J. Pharm. Pharmacogn. Res. 2 (2014).

DOI: 10.1016/j.powtec.2018.01.043

Google Scholar

[76] N. W. Suriani,M. L. S. Taulu. The characteristics of omega-3 fatty acids concentrated microcapsules from wastewater byproduct of tuna canning (Thunnus sp. ), Int. J. Chem. Tech. Res. 8 (2015) 235-243.

Google Scholar

[77] V. B. de Souza, M. Thomazini, J. C. d. C. Balieiro,C. S. Fávaro-Trindade. Effect of spray drying on the physicochemical properties and color stability of the powdered pigment obtained from vinification byproducts of the Bordo grape (Vitis labrusca), Food Bioprod. Proc. 93 (2015).

DOI: 10.1016/j.fbp.2013.11.001

Google Scholar

[78] V. B. d. Souza, A. Fujita, M. Thomazini, E. R. da Silva, J. F. Lucon Jr, M. I. Genovese,C. S. Favaro-Trindade. Functional properties and stability of spray-dried pigments from Bordo grape (Vitis labrusca) winemaking pomace, Food Chem. 164 (2014).

DOI: 10.1016/j.foodchem.2014.05.049

Google Scholar

[79] A. M. Bakowska-Barczak,P. P. Kolodziejczyk. Black currant polyphenols: their storage stability and microencapsulation, Ind. Crops Prod. 34 (2011) 1301-1309.

DOI: 10.1016/j.indcrop.2010.10.002

Google Scholar

[80] D. B. Rodriguez-Amaya. Natural food pigments and colorants, Curr. Opin. Food Sci. 7 (2016) 20-26.

Google Scholar

[81] K. G. H. Desai,H. J. Park. Recent developments in microencapsulation of food ingredients, Drying Technol. 23 (2005) 1361-1394.

DOI: 10.1081/drt-200063478

Google Scholar

[82] L. Stoll, T. M. H. Costa, A. Jablonski, S. H. Flôres,A. Rios. Microencapsulation of Anthocyanins with Different Wall Materials and Its Application in Active Biodegradable Films, Food Bioproc. Technol. 9 (2015) 172-181.

DOI: 10.1007/s11947-015-1610-0

Google Scholar

[83] M. Ganje, S. M. Jafari, A. Dusti, D. Dehnad, M. Amanjani,V. Ghanbari. Modeling quality changes in tomato paste containing microencapsulated olive leaf extract by accelerated shelf life testing, Food Bioproc. Technol. 97 (2016) 12-19.

DOI: 10.1016/j.fbp.2015.10.002

Google Scholar

[84] M. Taghvaei, S. M. Jafari, A. S. Mahoonak, A. M. Nikoo, N. Rahmanian, J. Hajitabar,N. Meshginfar. The effect of natural antioxidants extracted from plant and animal resources on the oxidative stability of soybean oil, LWT - Food Science and Technology. 56 (2014).

DOI: 10.1016/j.lwt.2013.11.009

Google Scholar

[85] P. N. Ezhilarasi, D. Indrani, B. S. Jena,C. Anandharamakrishnan. Freeze drying technique for microencapsulation of Garcinia fruit extract and its effect on bread quality, Journal of Food Engineering. 117 (2013) 513-520.

DOI: 10.1016/j.jfoodeng.2013.01.009

Google Scholar

[86] S. -M. Jafari, K. Mahdavi-Khazaei,A. Hemmati-Kakhki. Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying, Carbohyd. Polym. 140 (2016) 20-25.

DOI: 10.1016/j.carbpol.2015.11.079

Google Scholar

[87] K. Mahdavee Khazaei, S. M. Jafari, M. Ghorbani,A. Hemmati Kakhki. Application of maltodextrin and gum Arabic in microencapsulation of saffron petal's anthocyanins and evaluating their storage stability and color, Carbohyd. Polym. 105 (2014).

DOI: 10.1016/j.carbpol.2014.01.042

Google Scholar

[88] A. Belščak-Cvitanović, R. Stojanović, V. Manojlović, D. Komes, I. J. Cindrić, V. Nedović,B. Bugarski. Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate–chitosan system enhanced with ascorbic acid by electrostatic extrusion, Food Res. Int. 44 (2011).

DOI: 10.1016/j.foodres.2011.03.030

Google Scholar

[89] D. T. Santos, J. Q. Albarelli, M. M. Beppu,M. A. A. Meireles. Stabilization of anthocyanin extract from jabuticaba skins by encapsulation using supercritical CO2 as solvent, Food Research International. 50 (2013) 617-624.

DOI: 10.1016/j.foodres.2011.04.019

Google Scholar

[90] D. T. Santos,M. A. A. Meireles. Carotenoid pigments encapsulation: Fundamentals, techniques and recent trends., Open Chem. Eng. J. 4 (2010) 42-50.

DOI: 10.2174/1874123101004010042

Google Scholar

[91] W. Zam, G. Bashour, W. Abdelwahed,W. Khayata. Alginate-pomegranate peels' polyphenols beads: Effects of formulation parameters on loading efficiency, Brazilian J. Pharma. Sci. 50 (2014) 741-748.

DOI: 10.1590/s1984-82502014000400009

Google Scholar

[92] C. Kropat, M. Betz, U. Kulozik, S. Leick, H. Rehage, U. Boettler, N. Teller,D. Marko. Effect of Microformulation on the Bioactivity of an Anthocyanin-rich Bilberry Pomace Extract (Vaccinium myrtillus L. ) in Vitro, J. Agric. Food Chem. 61 (2013).

DOI: 10.1021/jf305180j

Google Scholar