Calcium Carbonate and Cellulose/Calcium Carbonate Composites: Synthesis, Characterization, and Biomedical Applications

Article Preview

Abstract:

CaCO3 has six polymorphs such as vaterite, aragonite, calcite, amorphous, crystalline monohydrate, and hexahydrate CaCO3. CaCO3 is a typical biomineral that is abundant in both organisms and nature and has important industrial applications. Cellulose could be used as feedstocks for producing biofuels, bio-based chemicals, and high value-added bio-based materials. In the past, more attentions have been paid to the synthesis and applications of CaCO3 and cellulose/CaCO3 nanocomposites due to its relating properties such as mechanical strength, biocompatibility, and biodegradation, and bioactivity, and potential applications including biomedical, antibacterial, and water pretreatment fields as functional materials. A variety of synthesis methods such as the hydrothermal/solvothermal method, biomimetic mineralization method, microwave-assisted method, (co-) precipitation method, and sonochemistry method, were employed to the preparation of CaCO3 and cellulose/CaCO3 nanocomposites. In this chapter, the recent development of CaCO3 and cellulose/CaCO3 nanocomposites has been reviewed. The synthesis, characterization, and biomedical applications of CaCO3 and cellulose/CaCO3 nanocomposites are summarized. The future developments of CaCO3 and cellulose/CaCO3 nanocomposites are also suggested.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

24-44

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. H. E. Cartwright, A. G. Checa, J. D. Gale, D. Gebauer, C. I. Sainz-Diaz, Calcium carbonate polyamorphism and its role in biomineralization: How many amorphous calcium carbonates are there? Angew. Chem. Int. Ed. 51 (2012) 11960-11970.

DOI: 10.1002/anie.201203125

Google Scholar

[2] T. Ikoma, T. Tonegawa, H. Watanaba, G. P. Chen, J. Tanaka, Y. Mizushima, Drug-supported microparticles of calcium carbonate nanocrystals and its covering with hydroxyapatite, J. Nanosci. Nanotechnol. 7 (2007) 822-827.

DOI: 10.1166/jnn.2007.523

Google Scholar

[3] L. Li, Y. J. Zhu, S. W. Cao, M. Y. Ma, Preparation and drug release properties of nanostructured CaCO3 porous hollow microspheres, J. Inorg. Mater. 24 (2009) 166-170.

DOI: 10.3724/sp.j.1077.2009.00166

Google Scholar

[4] X. Geng, L. Liu, J. Jiang, S. H. Yu, Crystallization of CaCO3 mesocrystals and com plex aggregates in a mixed solvent media using polystyrene sulfonate as a crystal growth modifier, Cryst. Growth Des. 10 (2010) 3448-3453.

DOI: 10.1021/cg100206y

Google Scholar

[5] F. Natalio, T. P. Corrales, M. Panther, D. Schollmeyer, I. Lieberwirth, W. E. G. Muller, M. Kappl, H. J. Butt, W. Tremel, Flexible minerals: Self-assembled calcite spicules with extreme bending strength, Science, 339 (2013) 1298-1302.

DOI: 10.1126/science.1216260

Google Scholar

[6] R. J. Qi, Y. J. Zhu, Microwave-assisted synthesis of calcium carbonate (vaterite) of various morphologies in water-ethylene glycol mixed solvents, J. Phys. Chem. B 110 (2006) 8302-8306.

DOI: 10.1021/jp060939s

Google Scholar

[7] M. Y. Ma, Y. J. Zhu, L. Li, S. W. Cao, Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate: Preparation and application in drug delivery, J. Mater. Chem. 18 (2008) 2722-2727.

DOI: 10.1039/b800389k

Google Scholar

[8] C. You, Q. Zhang, Q. Z. Jiao, Z. D. Fu, Supernet structures of calcium carbonate mesocrystals formed in a blend system of anionic/nonionic surfactants, Cryst. Growth Des. 9 (2009) 4720-4724.

DOI: 10.1021/cg900584s

Google Scholar

[9] Y. C. Zhu, Y. Y. Liu, Q. C. Ruan, Y. Zeng, J. W. Xiao, Z. W. Liu, L. F. Cheng, F. F. Xu, L. L. Zhang, Superstructures and mineralization of laminated vaterite mesocrystals via mesoscale transformation and self-assembly, J. Phys. Chem. C 113 (2009).

DOI: 10.1021/jp900475r

Google Scholar

[10] M. Kijima, Y. Oaki, Y. Munekawa, H. Imai, Synthesis and morphogenesis of organic and inorganic polymers by means of biominerals and biomimetic materials, Chem. - A Europ. J. 19 (2013) 2284–2293.

DOI: 10.1002/chem.201203088

Google Scholar

[11] A. Gal, W. Habraken, D. Gur, P. Fratzl, S. Weiner, L. Addadi, Calcite crystal growth by a solid-state transformation of stabilized amorphous calcium carbonate nanospheres in a hydrogel, Angew. Chem. Int. Ed. 52 (2013) 4867-4870.

DOI: 10.1002/anie.201210329

Google Scholar

[12] C. Qi, Y. J. Zhu, B. Q. Lu, X. Y. Zhao, J. Zhao, F. Chen, J. Wu, ATP-stabilized amorphous calcium carbonate nanospheres and their application in protein adsorption, Small, 10 (2014) 2047-(2056).

DOI: 10.1002/smll.201302984

Google Scholar

[13] C. Qi, Y. J. Zhu, F. Chen, Microwave hydrothermal transformation of amorphous calcium carbonate nanospheres and application in protein adsorption. ACS Appl. Mater. Interfaces, 6 (2014) 4310-4320.

DOI: 10.1021/am4060645

Google Scholar

[14] C. Qi, J. J. Huang, F. Chen, J. Wu, C. N. Hao, Y. Q. Shi, J. L. Duan, Y. J. Zhu, Synthesis, characterization and applications of calcium carbonate/fructose 1, 6-bisphosphate composite nanospheres and carbonated hydroxyapatite porous nanospheres, J. Mater. Chem. B 2 (2014).

DOI: 10.1039/c4tb01342e

Google Scholar

[15] Y. Zhao, Z. Luo, M. H. Li, Q. Y. Qu, X. Ma, S. H. Yu, Y. L. Zhao, A preloaded amorphous calcium carbonate/doxorubicin@silica nanoreactor for pH-responsive delivery of an anticancer drug, Angew. Chem. Int. Ed. 54 (2015) 919-922.

DOI: 10.1002/anie.201408510

Google Scholar

[16] W. Li, P. Y. Wu, Biomimetic synthesis of monodisperse rosette-like calcite mesocrystals regulated by carboxymethyl cellulose and the proposed mechanism: An unconventional rhombohedra-stacking route, CrystEngComm, 11 (2009) 2466-2474.

DOI: 10.1039/b901580a

Google Scholar

[17] D. Gebauer, V. Oliynyk, M. Salajkova, J. Sort, Q. Zhou, L. Bergstr€om, G. Salazar-Alvarez, A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles, Nanoscale 3 (2011) 3563-3566.

DOI: 10.1039/c1nr10681c

Google Scholar

[18] A. Stoica-Guzun, M. Stroescu, S. Jinga, I. Jipa, T. Dobre, L. Dobre, Ultrasound influence upon calcium carbonate precipitation on bacterial cellulose membranes, Ultrasonics Sonochem. 19 (2012) 909-915.

DOI: 10.1016/j.ultsonch.2011.12.002

Google Scholar

[19] M. W. Rauch, M. Dressler, H. Scheel, D. V. Opdenbosch, C. Zollfrank, Mineralization of calcium carbonates in cellulose gel membranes, Eur. J. Inorg. Chem. (2012) 5192-5198.

DOI: 10.1002/ejic.201200575

Google Scholar

[20] A. Stoica-Guzun, M. Stroescu, S. I. Jinga, I. M. Jipa, T. Dobre, Microwave assisted synthesis of bacterial cellulose-calcium carbonate composites, Ind. Crops Prod. 50 (2013) 414-422.

DOI: 10.1016/j.indcrop.2013.07.063

Google Scholar

[21] N. Jia, S. M. Li, M. G. Ma, R. C. Sun, J. F. Zhu, Hydrothermal fabrication, characterization, and biological activity of cellulose/CaCO3 bionanocomposites, Carbohydr. Polym. 88 (2012) 179-184.

DOI: 10.1016/j.carbpol.2011.11.086

Google Scholar

[22] M. G. Ma, L. H. Fu, S. M. Li, X. M. Zhang, R. C. Sun, Y. D. Dai, Hydrothermal synthesis and characterization of wood powder/CaCO3 composites, Carbohydr. Polym. 88 (2012) 1470-1475.

DOI: 10.1016/j.carbpol.2012.02.043

Google Scholar

[23] M. G. Ma, L. H. Fu, R. C. Sun, N. Jia, Compare study on the cellulose/CaCO3 composites via microwave-assisted method using different cellulose types, Carbohydr. Polym. 90 (2012) 309-315.

DOI: 10.1016/j.carbpol.2012.05.043

Google Scholar

[24] L. H. Fu, Y. Y. Dong, M. G. Ma, S. M. Li, R. C. Sun, Compare study CaCO3 crystals on the cellulose substrate by microwave-assisted method and ultrasound agitation method, Ultrasonics Sonochem. 20 (2013) 839-845.

DOI: 10.1016/j.ultsonch.2012.11.001

Google Scholar

[25] L. H. Fu, Y. Y. Dong, M. G. Ma, W. Yue, S. L. Sun, R. C. Sun, Why to synthesize vaterite polymorph of calcium carbonate on the cellulose matrix via sonochemistry process? Ultrasonics Sonochem. 20 (2013) 1188-1193.

DOI: 10.1016/j.ultsonch.2013.03.008

Google Scholar

[26] M. G. Ma, Y. Y. Dong, L. H. Fu, S. M. Li, R. C. Sun, Cellulose/CaCO3 nanocompo sites: Microwave ionic liquid synthesis, characterization, and biological activity, Carbohydr. Polym. 92 (2013) 1669-1676.

DOI: 10.1016/j.carbpol.2012.11.034

Google Scholar

[27] L. H. Fu, M. G. Ma, J. Bian, F. Deng, X. Du, Research on the formation mechanism of composites from lignocelluloses and CaCO3, Mater. Sci. Engineer. C 44 (2014) 216-224.

DOI: 10.1016/j.msec.2014.08.029

Google Scholar