[1]
K.B. Chipasa, Limits of physicochemical treatment of wastewater in the vegetable oil refining industry. Pol. J. Environ. Stud. 10 (2001) 141-147.
Google Scholar
[2]
Ohnishi M. Confectionary, The Best Treatment of Food Processing Wastewater Handbook, (Science Forum, 2002), 351.
Google Scholar
[3]
B. Rusten, A. Lunder, O. Elde, H. Odegaard, Chemical Pretreatment of Dairy Wastewater, Water Sci. Tech., 28 (1993) 67-76.
Google Scholar
[4]
M. Stoller, A. Chianese, Optimization of membrane batch processes by means of the critical flux theory, Desalination 191(2006) 62-70.
DOI: 10.1016/j.desal.2005.07.021
Google Scholar
[5]
M. Iaquinta, M. Stoller, C. Merli, Optimization of a nanofiltration membrane process for tomato industry wastewater effluent treatment, Desalination 245 (2009) 314-320.
DOI: 10.1016/j.desal.2008.05.028
Google Scholar
[6]
A.L. Ahmad, S. Ismail, S. Bhatia, Ultrafiltration behavior in the treatment of agro-industry effluent: Pilot scale studies, Chem. Eng. Sci. 60 (2005) 5385-5394.
DOI: 10.1016/j.ces.2005.04.021
Google Scholar
[7]
S. Sridhar, A. Kale, A.A. Khan, Reverse osmosis of edible vegetable oil industry effluent, J. Membr. Sci. 205. (2002) 83-90.
DOI: 10.1016/s0376-7388(02)00065-0
Google Scholar
[8]
El. Shafey, EI. Correia PFM. de Carvalho JMR. An integrated process of olive mill wastewater treatment, Sep. Sci. Technol. 40(14) (2005) 2841-2869.
DOI: 10.1080/01496390500333152
Google Scholar
[9]
R.A. Pandey, PB. Sanyal, N. Chattopadhyay, SN. Kaul, Treatment and reuse of wastes of a vegetable oil refinery, Res. Cons. and recyc. 37 (2003)101-117.
DOI: 10.1016/s0921-3449(02)00071-x
Google Scholar
[10]
M. Bressan, L. D Liberatore, N. Alessandro, L. Tonucci, C. Belli, G. Ranalli Improved combined chemical and biological treatments of olive oil mill wastewaters, J. Agri. & F. Chem. 52 (2004) 1228-1233.
DOI: 10.1021/jf035128p
Google Scholar
[11]
K. Reddy, G.D. Drysdale, F. Bux, Evaluation of activated sludge treatment and settleability in remediation of edible oil effluent, Water SA. 29(3) (2003) 245-250.
DOI: 10.4314/wsa.v29i3.4924
Google Scholar
[12]
S.P. Mkhize, F. Bux, Assessment of activated sludge to remediate edible-oil effluent, South African, J. of Sci. 97 (2001) 380-382.
Google Scholar
[13]
G. Taralas, M.G. Kontominas, Thermochemical treatment of solid and wastewater effluent originating from the olive oil food industry, Energy Fuels, 19 (2005)1179-1185.
DOI: 10.1021/ef040078r
Google Scholar
[14]
W. Gernjak, M.I. Maldonado, S. Malato, J. Caceres, T. Krutzler, A. Glaser, R. Bauer, Pilot-plant treatment of olive mill wastewater (OMW) by solar TiO2 photocatalysis and solar photo-Fenton, Solar Energy, 77 (2004) 567-572.
DOI: 10.1016/j.solener.2004.03.030
Google Scholar
[15]
M.M.A. Khan, Rafiuddin, Synthesis, characterization and electrochemical study of calcium phosphate ion-exchange membrane, Desalination, 272 (2011) 306-312.
DOI: 10.1016/j.desal.2011.01.041
Google Scholar
[16]
M.M.A. Khan, Rafiuddin, Preparation, electrochemical characterization and antibacterial study of polystyrene-based magnesium–strontium phosphate composite membrane, Mater. Sci. Eng. C, 32 (2012)1210-1217.
DOI: 10.1016/j.msec.2012.03.010
Google Scholar
[17]
M.M.A. Khan, Rafiuddin, Inamuddin, Evaluation of transport parameters for PVC based polyvinyl alcohol Ce(IV) phosphate composite membrane, Mater. Sci. Eng. C, 33 (2013) 2360-2366.
DOI: 10.1016/j.msec.2013.01.067
Google Scholar
[18]
T. Teorell, An attempt to formulate a quantitative theory of membrane permeability, Proc. Soc. Exp. Biol. 33 (1935) 282-285.
DOI: 10.3181/00379727-33-8339c
Google Scholar
[19]
T. Teorell, Studies on the Diffusion Effect, upon Ionic Distribution, some theoretical Considerations, Proc Natl Acad Sci U S A. 3 (1935) 152-161.
DOI: 10.1073/pnas.21.3.152
Google Scholar
[20]
K.H. Meyer, J.F. Sievers, Permeability of membranes. I. Theory of ionic permeability, permeability of membranes. II. Studies with artificial selective membranes. The permeability of membranes. IV. Analysis of the structure of vegetable and animal membranes, Helv. Chimi. Acta. 19 (1936).
DOI: 10.1007/978-3-319-28098-1_2
Google Scholar
[21]
T.J. Chou, A. Tanioka, Membrane potential across charged membranes in organic solutions, J. Phys. Chem B, 102 (1998) 7198-7202.
DOI: 10.1021/jp981673v
Google Scholar
[22]
S. Koter, P. Piotrowski, J. Kerrs, Comparative investigations of ion-exchange membranes, J. Membr. Sci. 153 (1999) 83-90.
Google Scholar
[23]
ASTM D543–95, Standard Particles for Evaluating the Resistance of Plastics to Chemical Reagents, (1998) p.27.
Google Scholar