Preparation, Structural and Electrochemical Properties of PVC Based Magnesium Molybdate Ion-Exchange Composite Membrane for Desalination of Food Industry Waste Water

Article Preview

Abstract:

The inorganic-organic hybrid composite membranes have played a rocking role for separation, concentration, purification and clarification of food industry wastewater. The separation of wastewater produced from post-treatment part of food industry processing using PVC based magnesium molybdate (MM) composite membrane was studied in this paper. The physicochemical and electrochemical studies of composite membrane shows better results from previously reported membranes. In this study, the transport number, mobility ratio and surface charge density of composite membrane play a dominant role for understanding the membrane mechanism and these parameters depend on the concentration of various univalent electrolytes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-23

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.B. Chipasa, Limits of physicochemical treatment of wastewater in the vegetable oil refining industry. Pol. J. Environ. Stud. 10 (2001) 141-147.

Google Scholar

[2] Ohnishi M. Confectionary, The Best Treatment of Food Processing Wastewater Handbook, (Science Forum, 2002), 351.

Google Scholar

[3] B. Rusten, A. Lunder, O. Elde, H. Odegaard, Chemical Pretreatment of Dairy Wastewater, Water Sci. Tech., 28 (1993) 67-76.

Google Scholar

[4] M. Stoller, A. Chianese, Optimization of membrane batch processes by means of the critical flux theory, Desalination 191(2006) 62-70.

DOI: 10.1016/j.desal.2005.07.021

Google Scholar

[5] M. Iaquinta, M. Stoller, C. Merli, Optimization of a nanofiltration membrane process for tomato industry wastewater effluent treatment, Desalination 245 (2009) 314-320.

DOI: 10.1016/j.desal.2008.05.028

Google Scholar

[6] A.L. Ahmad, S. Ismail, S. Bhatia, Ultrafiltration behavior in the treatment of agro-industry effluent: Pilot scale studies, Chem. Eng. Sci. 60 (2005) 5385-5394.

DOI: 10.1016/j.ces.2005.04.021

Google Scholar

[7] S. Sridhar, A. Kale, A.A. Khan, Reverse osmosis of edible vegetable oil industry effluent, J. Membr. Sci. 205. (2002) 83-90.

DOI: 10.1016/s0376-7388(02)00065-0

Google Scholar

[8] El. Shafey, EI. Correia PFM. de Carvalho JMR. An integrated process of olive mill wastewater treatment, Sep. Sci. Technol. 40(14) (2005) 2841-2869.

DOI: 10.1080/01496390500333152

Google Scholar

[9] R.A. Pandey, PB. Sanyal, N. Chattopadhyay, SN. Kaul, Treatment and reuse of wastes of a vegetable oil refinery, Res. Cons. and recyc. 37 (2003)101-117.

DOI: 10.1016/s0921-3449(02)00071-x

Google Scholar

[10] M. Bressan, L. D Liberatore, N. Alessandro, L. Tonucci, C. Belli, G. Ranalli Improved combined chemical and biological treatments of olive oil mill wastewaters, J. Agri. & F. Chem. 52 (2004) 1228-1233.

DOI: 10.1021/jf035128p

Google Scholar

[11] K. Reddy, G.D. Drysdale, F. Bux, Evaluation of activated sludge treatment and settleability in remediation of edible oil effluent, Water SA. 29(3) (2003) 245-250.

DOI: 10.4314/wsa.v29i3.4924

Google Scholar

[12] S.P. Mkhize, F. Bux, Assessment of activated sludge to remediate edible-oil effluent, South African, J. of Sci. 97 (2001) 380-382.

Google Scholar

[13] G. Taralas, M.G. Kontominas, Thermochemical treatment of solid and wastewater effluent originating from the olive oil food industry, Energy Fuels, 19 (2005)1179-1185.

DOI: 10.1021/ef040078r

Google Scholar

[14] W. Gernjak, M.I. Maldonado, S. Malato, J. Caceres, T. Krutzler, A. Glaser, R. Bauer, Pilot-plant treatment of olive mill wastewater (OMW) by solar TiO2 photocatalysis and solar photo-Fenton, Solar Energy, 77 (2004) 567-572.

DOI: 10.1016/j.solener.2004.03.030

Google Scholar

[15] M.M.A. Khan, Rafiuddin, Synthesis, characterization and electrochemical study of calcium phosphate ion-exchange membrane, Desalination, 272 (2011) 306-312.

DOI: 10.1016/j.desal.2011.01.041

Google Scholar

[16] M.M.A. Khan, Rafiuddin, Preparation, electrochemical characterization and antibacterial study of polystyrene-based magnesium–strontium phosphate composite membrane, Mater. Sci. Eng. C, 32 (2012)1210-1217.

DOI: 10.1016/j.msec.2012.03.010

Google Scholar

[17] M.M.A. Khan, Rafiuddin, Inamuddin, Evaluation of transport parameters for PVC based polyvinyl alcohol Ce(IV) phosphate composite membrane, Mater. Sci. Eng. C, 33 (2013) 2360-2366.

DOI: 10.1016/j.msec.2013.01.067

Google Scholar

[18] T. Teorell, An attempt to formulate a quantitative theory of membrane permeability, Proc. Soc. Exp. Biol. 33 (1935) 282-285.

DOI: 10.3181/00379727-33-8339c

Google Scholar

[19] T. Teorell, Studies on the Diffusion Effect, upon Ionic Distribution, some theoretical Considerations, Proc Natl Acad Sci U S A. 3 (1935) 152-161.

DOI: 10.1073/pnas.21.3.152

Google Scholar

[20] K.H. Meyer, J.F. Sievers, Permeability of membranes. I. Theory of ionic permeability, permeability of membranes. II. Studies with artificial selective membranes. The permeability of membranes. IV. Analysis of the structure of vegetable and animal membranes, Helv. Chimi. Acta. 19 (1936).

DOI: 10.1007/978-3-319-28098-1_2

Google Scholar

[21] T.J. Chou, A. Tanioka, Membrane potential across charged membranes in organic solutions, J. Phys. Chem B, 102 (1998) 7198-7202.

DOI: 10.1021/jp981673v

Google Scholar

[22] S. Koter, P. Piotrowski, J. Kerrs, Comparative investigations of ion-exchange membranes, J. Membr. Sci. 153 (1999) 83-90.

Google Scholar

[23] ASTM D543–95, Standard Particles for Evaluating the Resistance of Plastics to Chemical Reagents, (1998) p.27.

Google Scholar