[1]
N. P. Suh, Innovation in Polymer Processing, Hanser Gardner Publications, Cincinnati, (1996).
Google Scholar
[2]
T. K. Okamoto, Microcellular Processing, Hanser Publications, Cincinnati, (2003).
Google Scholar
[3]
J. Xu, Microcellular Injection Molding, John Wiley & Sons, Inc., Hoboken, NJ, (2010).
Google Scholar
[4]
L. Singh, V. Kumar, and B. D. Ratner, Generation of porous microcellular 85/15 poly (dl-lactide-co-glycolide) foams for biomedical applications, Biomaterials, 25 (2004) 2611–2617.
DOI: 10.1016/j.biomaterials.2003.09.040
Google Scholar
[5]
I. Kikic and F. Vecchione, Supercritical impregnation of polymers, Current Opinion in Solid State and Materials Science, 7(2003) 399–405.
DOI: 10.1016/j.cossms.2003.09.001
Google Scholar
[6]
Z. Xinli, H. Xiaoling, G. Ping, and L. Guozheng, Preparation and pore structure of porous membrane by supercritical fluid, The Journal of Supercritical Fluids, 49(2009), 111–116.
DOI: 10.1016/j.supflu.2008.09.021
Google Scholar
[7]
P. C. Lee, J. Wang, and C. B. Park, Extrusion of microcellular open-cell LDPE-based sheet foams, Journal of Applied Polymer Science, 102(2006) 3376–3384.
DOI: 10.1002/app.24868
Google Scholar
[8]
E. J. Beckman, Supercritical and near-critical CO2 in green chemical synthesis and processing, The Journal of Supercritical Fluids, 28(2004), 121–191.
DOI: 10.1016/s0896-8446(03)00029-9
Google Scholar
[9]
S. Cha, Foaming of Super Microcellular Plastics, Massachusetts Institute of Technology, Cambridge, (1994).
Google Scholar
[10]
C. Mantelis and T. Meyer, Supercritical Fluids, Encyclopedia Of Polymer Science and Technology, John Wiley & Sons, Inc., (2008).
Google Scholar
[11]
J. F. Brennecke and C. A. Eckert, Phase equilibria for supercritical fluid process design, AIChE Journal, 35 (1989), 1409–1427.
DOI: 10.1002/aic.690350902
Google Scholar
[12]
J. Peng, L. Turng, and X. Peng, A new microcellular injection molding process for polycarbonate using water as the physical blowing agent, Polymer Engineering & Science, 52 (2012) 1464–1473.
DOI: 10.1002/pen.23092
Google Scholar
[13]
D. E. Johnson, US Patent No. 4, 124, 336 (1978).
Google Scholar
[14]
Information on http: / www. trexel. com.
Google Scholar
[15]
Y. Moon, K. Lee, and S. W. Cha, Bubble growth in mold cavities during microcellular injection molding processes, Journal of Mechanical Science and Technology, 23(2010), 3349–3356.
DOI: 10.1007/s12206-009-0913-3
Google Scholar
[16]
H. Huang and J. Wang, Equipment development and experimental investigation on the cellular structure of microcellular injection molded parts, Polymer Testing, 27(2008) 513–519.
DOI: 10.1016/j.polymertesting.2008.02.009
Google Scholar
[17]
S. N. S. Leung, Mechanism of Cell Nucleation, Growth and Coarsening in Plastic Foaming: Theory, Simulation and Experiments, University of Toronto, (2009).
Google Scholar
[18]
M. Yuan, L. Turng, R. Spindler, D. Caulfield, C. Hunt, and K. Corporation, Microcellular Nanocomposite Injection Molding Process, ANTEC, 1(2003) 691–695.
Google Scholar
[19]
J. Lee, L. Turng, E. Dougherty, and P. Gorton, A novel method for improving the surface quality of microcellular injection molded parts, Polymer, 52(2011) 1436–1446.
DOI: 10.1016/j.polymer.2011.01.026
Google Scholar
[20]
J. Xu and D. Pierick, Microcellular foam processing in reciprocating screw injection molding machines, Journal of Injection Molding Technology, 5(2001) 152–159.
DOI: 10.1002/9780470642818.ch7
Google Scholar
[21]
G. O. Aloku and X. Yuan, Numerical simulation of polymer foaming process in extrusion flow, Chemical Engineering Science, 65(2010) 3749–3761.
DOI: 10.1016/j.ces.2010.03.022
Google Scholar
[22]
D. W. Van Krevelen, Properties of Polymer, Elsevier, New York, (1976).
Google Scholar
[23]
J. L. Throne, Thermoplastic Foams. Hertford, (1996).
Google Scholar
[24]
P. G. Debenedetti and R. C. Reid, Diffusion and mass transfer in supercritical fluids, AIChE J, 32(1986) 2034–(2046).
DOI: 10.1002/aic.690321214
Google Scholar
[25]
J. Wang, Rheology of Foaming Polymers and Its Influence on Microcellular Processing, University of Toronto, (2009).
Google Scholar
[26]
T. Ishikawa, K. Taki, and M. Ohshima, Polymer Engineering And Science, 52(2012) 875–883.
Google Scholar
[27]
W. Zhai, J. Yu, L. Wu, W. Ma, and J. He, Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams, Polymer, 47(2006) 7580–7589.
DOI: 10.1016/j.polymer.2006.08.034
Google Scholar
[28]
W. Zhai, J. Yu, and J. He, Ultrasonic irradiation enhanced cell nucleation : An effective approach to microcellular foams of both high cell density and expansion ratio, Polymer, 49(2008), 2430–2434.
DOI: 10.1016/j.polymer.2008.04.002
Google Scholar
[29]
D. Mao, J. R. Edwards, and A. Harvey, Prediction of foam growth and its nucleation in free and limited expansion, Chemical Engineering Science, 61(2006) 1836–1845.
DOI: 10.1016/j.ces.2005.07.026
Google Scholar
[30]
V. Kumar, Phenomenology of bubble nucleation in the solid-state nitrogen – polystyrene microcellular foams, Colloids and Surfaces A: Physicochem. Eng. Aspects, 263(2005) 336–340.
DOI: 10.1016/j.colsurfa.2004.12.056
Google Scholar
[31]
J. R. Youn and N. P. Suh, Processing of Microcellular Polyester Composites, Polymer Composites, 6(1985) 175–180.
DOI: 10.1002/pc.750060308
Google Scholar
[32]
J. S. Colton and N. P. Suh, Nucleation of microcellular foam: Theory and practice, Polymer Engineering and Science, 27(1987), 500–503.
DOI: 10.1002/pen.760270704
Google Scholar
[33]
C. A. Ward and A. S. Tucker, Thermodynamic Theory of Diffusion-Controlled Bubble Growth or Dissolution and Experimental Examination of the Prediction, Journal of Applied Physics, 46(1975) 233–238.
DOI: 10.1063/1.321327
Google Scholar
[34]
M. A. Shaft, K. Joshi, and R. W. Flumerfelt, Bubble size distributions in freely expanded polymer foams, Chemical Engineering Science, 52(1997) 635–644.
DOI: 10.1016/s0009-2509(96)00433-2
Google Scholar
[35]
J. Fisher, The Fracture of Liquids, Journal of Applied Physics, 19 (1948) 1062–1067.
Google Scholar
[36]
M. Blander and J. L. Katz, Bubble Nucleation in Liquids, AIChE Journal, 21(1975) 833–848.
DOI: 10.1002/aic.690210502
Google Scholar
[37]
C. A. Ward and E. Levart, Conditions for Stability of Bubble Nuclei in Solid Surfaces Contacting a Liquid-gas Solution, Journal of Applied Physics, 56(1984), 491–500.
DOI: 10.1063/1.333937
Google Scholar
[38]
P. M. Wilt, Nucleation Rates and Bubble Stability in Water-Carbon Dioxide Solutions, Journal of Colloid and Interface Science, 112(1986) 530–538.
DOI: 10.1016/0021-9797(86)90122-0
Google Scholar
[39]
N. S. Ramesh, Foam Extrusion Principles and Practice, S. T. Lee, Ed. Lancaster, PA: Technomic Publishing Company, 2000, p.125–144.
Google Scholar
[40]
M. Amon and C. D. Denson, A Study of Dynamics of Foam Growth: Analysis of the Growth Closely Spaced Spherical Bubbles, Polymer Engineering & Science, 24(1984) 1026–1034.
DOI: 10.1002/pen.760241306
Google Scholar
[41]
A. Arefmanesh and S. G. Advani, Diffusion-induced growth of a gas bubble in a viscoelastic fluid, Rheol. Acta, 30(1991) 274–283.
DOI: 10.1007/bf00366641
Google Scholar
[42]
P. Eisenberg and M. P. Tulin, Cavitation, Handbook of Fluid Dynamics, V. Streeter, (Ed. ) New York: McGraw - Hill, (1961).
Google Scholar
[43]
D. W. Van Kreevlan, Properties of Polymers: Their Estimation and Correlation with Chemical Structure, Elsevier Scientific Publishing, Armsterdam, (1976).
Google Scholar
[44]
S. Han, P. Kennedy, R. Zheng, J. Xu, and L. Kishbaugh, Numerical analysis of microcellular injection molding, Journal of Cellular Plastics, 39(2003) 475–485.
DOI: 10.1177/0021955x03039214
Google Scholar
[45]
D. E. Rosner and M. Epstein, Effects of interface kinetics, capillarity and solute diffusion on bubble growth rates inhighly supersaturated liquids, Chemical Engineering Science, 27(1972) 69–88.
DOI: 10.1016/0009-2509(72)80142-8
Google Scholar
[46]
B. A. Rodeheaver and J. S. Colton, Open-celled microcellular thermoplastic foam, Polymer Engineering & Science, 41(2001) 380–400.
DOI: 10.1002/pen.10736
Google Scholar
[47]
X. Sun, L.S. Trung, E. Dougherty, and P. Gorton, Artificial Neural Network – Based Supercritical Fluid Dosage Control for Microcellular Injection Molding, Advances in Polymer Technology, 31(2012) 7–19.
DOI: 10.1002/adv.20230
Google Scholar
[48]
A. H. Behravesh, Extrusion Processing of Low-Density Microcellular Foams, University of Toronto, (1998).
Google Scholar
[49]
G. J. F. Breedveld and J. M. Prausnitz, Thermodynamic properties of supercritical fluids and their mixtures at very high pressures, AIChE J, 19(1973) 783–796.
DOI: 10.1002/aic.690190416
Google Scholar
[50]
L. Lim, R. Auras, and M. Rubino, Processing technologies for poly ( lactic acid ), Progress in Polymer Science, 33(2008) 820–852.
DOI: 10.1016/j.progpolymsci.2008.05.004
Google Scholar
[51]
M. Nobelen, S. Hoppe, C. Fonteix, F. Pla, M. Dupire, and B. Jacques, Modeling of the rheological behavior of polyethylene / supercritical CO2 solutions, Chemical Engineering Science, 61(2006) 5334–5345.
DOI: 10.1016/j.ces.2006.03.052
Google Scholar
[52]
R. Murray, J. Weller, and V. Kumar, Solid-state microcellular acrylonitrile-butadiene-styrene foams, Cellular polymers, 19(2000) 413–425.
Google Scholar
[53]
S. Huang, G. Wu, and S. Chen, Preparation of open cellular PMMA microspheres by supercritical carbon dioxide foaming, The Journal of Supercritical Fluids, 40(2007) 323–329.
DOI: 10.1016/j.supflu.2006.06.005
Google Scholar
[54]
S. N. Leung, C. B. Park, D. Xu, H. Li, and R. G. Fenton, Computer Simulation of Bubble-Growth Phenomena in Foaming, Industrial & Engineering Chemistry Research 45(2006) 7823–7831.
DOI: 10.1021/ie060295a
Google Scholar
[55]
Information on https: / www. trexel. com.
Google Scholar
[56]
T. Ishikawa and M. Ohshima, Visual observation and numerical studies of polymer foaming behavior of polypropylene/carbon dioxide system in a core‐back injection molding process, Polymer Engineering & Science, 51 (2011) 1617–1625.
DOI: 10.1002/pen.21945
Google Scholar
[57]
U. P. Jung, Investigation of Foaming Behavior of Thermoplastic Polyolefin (TPO) Blend, University of Toronto, (2007).
Google Scholar
[58]
A. Ameli, D. Jahani, M. Nofar, P. U. Jung, and C. B. Park, Processing and characterization of solid and foamed injection-molded polylactide with talc, Journal of Cellular Plastics, 6(2013), 1–24.
DOI: 10.1177/0021955x13481993
Google Scholar
[59]
A. Javadi, Y. Srithep, S. Pilla, J. Lee, S. Gong, and L. Turng, Processing and characterization of solid and microcellular PHBV / coir fi ber composites, Materials Science & Engineering C, 30(2010), 749–757.
DOI: 10.1016/j.msec.2010.03.008
Google Scholar
[60]
S. J. A. Rizvi, M. H. Alaei, A. Yadav, and N. Bhatnagar, Quantitative Analysis of Cell Distribution in Injection Molded Microcellular Foam, SPE FOAM 2013, 1–7.
DOI: 10.1177/0021955x14524081
Google Scholar
[61]
M. R. Barzegari and D. Rodrigue, The Effect of Injection Molding Conditions on the Morphology of Polymer Structural Foams, Polymer Engineering & Science, 49(2009), 949–959.
DOI: 10.1002/pen.21283
Google Scholar
[62]
H. Wu, Microcellular Injection Moulding for an Oesophageal Implant, Lehrstuhl für Medizintechnik Technische Universität München Microcellular, (2009).
Google Scholar
[63]
R. S. Lenk, Polymer Rheology. Applied Science Publishers, London, (1978).
Google Scholar
[64]
F. J. Gomez-Gomez, D. Arencon, M. A. Sanchez-Soto, A. B. Martinez, F. J. Gómez-gómez, D. Arencón, M. Á. Sánchez-soto, and A. B. Martínez, Influence of the injection moulding parameters on the microstructure and thermal properties of microcellular polyethylene terephthalate glycol foams, Journal of Cellular Plastics, 49(2012).
DOI: 10.1177/0021955x12460044
Google Scholar
[65]
S. Chen, H. Li, S. Hwang, and H. Wang, Passive mold temperature control by a hybrid fi lming-microcellular injection molding processing, International Communications in Heat and Mass Transfer, 35(2008), 822–827.
DOI: 10.1016/j.icheatmasstransfer.2008.03.013
Google Scholar
[66]
R. Miyamoto, S. Yasuhara, H. Shikuma, and M. Ohshima, Preparation of micro/nanocellular polypropylene foam with crystal nucleating agents, Polymer Engineering & Science, 54(2014), 2075–(2085).
DOI: 10.1002/pen.23758
Google Scholar
[67]
Z. Xu, X. Jiang, T. Liu, G. Hu, and L. Zhao, Foaming of polypropylene with supercritical carbon dioxide, J. of Supercritical Fluids, 41(2007), 299–310.
DOI: 10.1016/j.supflu.2006.09.007
Google Scholar
[68]
L. M. Matuana, Solid state microcellular foamed poly(lactic acid): Morphology and property characterization, Bioresource Technology, 99(2008), 3643–3650.
DOI: 10.1016/j.biortech.2007.07.062
Google Scholar
[69]
Y. . Kim, M. Andover, T. Burnham, and M. Melrose, US 6, 659, 757 B2, (2003).
Google Scholar
[70]
C. B. Park and K. L. Cheung, A study of cell nucleation in the extrusion of polypropylene foams, Polymer Engineering & Science, 37(1997), 1–10.
DOI: 10.1002/pen.11639
Google Scholar
[71]
Q. Guo, J. Wang, and C. . Park, Visualization of PP Foaming with Nitrogen, SPE ANTEC Tech Papers, 2006, 2736 – 2740.
Google Scholar
[72]
M. Guo, M. Heuzey, and P. Carreau, Cell structure and dynamic properties of injection molded polypropylene foams, Polymer Engineering And Science, 47(2007), p.1070.
DOI: 10.1002/pen.20786
Google Scholar
[73]
T. Pathak and K. Jayaraman, Polymer Clay Nanocomposites with Improved Melt Strength, in SPE ANTEC Tech. Papers, 2007, p.103.
Google Scholar
[74]
C. Marrazzo, E. D. Maio, and S. Iannace, Foaming of synthetic and natural biodegradable polymers, Journal of Cellular Plastics, 43(2007), 123–133.
DOI: 10.1177/0021955x06073214
Google Scholar
[75]
M. Xanthos, M. W. Young, G. P. Karayannidis, and D. N. Bikiaris, Reactive modofication of polyethylene terephthalate with polyepoxides, Polymer Engineering & Science, 41(2001), 643–655.
DOI: 10.1002/pen.10760
Google Scholar
[76]
Y. Di, S. Iannace, E. Di Maio, and L. . Nicolais, Reactively modified poly(lactic acid): properties and foam processing, Macromolecular Mater. Eng, 290(2005), 1083–1090.
DOI: 10.1002/mame.200500115
Google Scholar
[77]
J. H. Aubert and R. L. Clough, Low-density, microcellular polystyrene foams, Polymer, 26(1985), 2047–(2054).
DOI: 10.1016/0032-3861(85)90186-7
Google Scholar
[78]
B. Krause, M. . Boerrigter, N. F. . van der Vegt, H. Strathmann, and M. Wessling, Novel open-cellular polysulfone morphologies produced with trace concentrations of solvents as pore opener, Journal of Membrane Science, 187(2001), 181–192.
DOI: 10.1016/s0376-7388(01)00329-5
Google Scholar
[79]
A. K. Bledzki and O. Faruk, Injection moulded microcellular wood fibre–polypropylene composites, Composites Part A: Applied Science and Manufacturing, 37(2006), 1358–1367.
DOI: 10.1016/j.compositesa.2005.08.010
Google Scholar
[80]
M. Abbasi, S. N. Khorasani, R. Bagheri, and J. M. Esfahani, Microcellular foaming of low-density polyethylene using nano-CaCo3 as a nucleating agent, Polymer Composites, 32(2011), 1718–1725.
DOI: 10.1002/pc.21188
Google Scholar
[81]
M. J. Jenkins, K. M. Shakesheff, and S. M. Howdle, Characterisation of microcellular foams produced from semi-crystalline PCL using supercritical carbon dioxide, European Polymer Journal, 42(2006), 3145–3151.
DOI: 10.1016/j.eurpolymj.2006.07.022
Google Scholar
[82]
D. Kohlhoff and M. Ohshima, Open Cell Microcellular Foams of Polylactic Acid (PLA)-based Blends with Semi-Interpenetrating Polymer Networks, Macromolecular Materials and Engineering, 296(2011), 770–777.
DOI: 10.1002/mame.201000371
Google Scholar
[83]
X. Wang, W. Li, and V. Kumar, A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications, Biomaterials, 27(2006), 1924–(1929).
DOI: 10.1016/j.biomaterials.2005.09.029
Google Scholar
[84]
C. Gualandi, L. J. White, L. Chen, R. A. Gross, K. M. Shakesheff, S. M. Howdle, and M. Scandola, Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester, Acta Biomaterialia, 6(2010).
DOI: 10.1016/j.actbio.2009.07.020
Google Scholar
[85]
N. Barroca, A. L. Daniel-da-silva, P. M. Vilarinho, and M. H. V Fernandes, Acta Biomaterialia Tailoring the morphology of high molecular weight PLLA scaffolds through bioglass addition, ACTA BIOMATERIALIA, vol. 6, no. 9, p.3611–3620, (2010).
DOI: 10.1016/j.actbio.2010.03.032
Google Scholar
[86]
P. Sarazin, X. Roy, and B. D. Favis, Controlled preparation and properties of porous poly ( l -lactide ) obtained from a co-continuous blend of two biodegradable polymers, Biomaterials, 25(2004), 5965–5978.
DOI: 10.1016/j.biomaterials.2004.01.065
Google Scholar
[87]
S. Pilla, S. G. Kim, G. K. Auer, S. Gong, and C. B. Park, Microcellular extrusion foaming of poly ( lactide )/ poly ( butylene adipate-co-terephthalate ) blends, Materials Science & Engineering C, 30(2010), 255–262.
DOI: 10.1016/j.msec.2009.10.010
Google Scholar
[88]
D. F. Baldwin, T. George, W. Woodru, M. Engineering, and C. B. Park, Microcellular Sheet Extrusion System Process Design Models for Shaping and Cell Growth Control, 3(1998).
DOI: 10.1002/pen.10232
Google Scholar
[89]
Trexel, Trexel Introduces New Long Glass Fiber Screw Design For MuCell® Process Which Improves Fiber Length Retention, News, MuCell® Process, Volume XIIIII, (2007).
Google Scholar
[90]
P. C. Lee, H. E. Naguib, C. B. Park, and J. Wang, Increase of open-cell content by plasticizing soft regions with secondary blowing agent, Polymer Engineering & Science, 45(2005), 1445–1451.
DOI: 10.1002/pen.20422
Google Scholar
[91]
D. Jahani, A. Ameli, P. U. Jung, M. R. Barzegari, C. B. Park, and H. Naguib, Open-cell cavity-integrated injection-molded acoustic polypropylene foams, Materials & Design, 53(2014), 20–28.
DOI: 10.1016/j.matdes.2013.06.063
Google Scholar
[92]
R. K. M. Chu, L. H. Mark, D. Jahani, and C. . Park, Injection Molding of Highly Porous Polypropylene Foams, Society of Plastics Engineers, SPE - Annual Technical Conference, (2014).
Google Scholar
[93]
R. K. M. Chu, Open-Cell Foaming with Injection Molding by Open-Cell Foaming with Injection Molding, University of Toronto, (2014).
Google Scholar
[94]
T. Ishikawa and M. Ohshima, Polypropylene / CO2 foaming in core-back molding, SPE Plastics Research Online, (2011), 2–4.
Google Scholar
[95]
S. Leicher, J. Will, H. Haugen, and E. Wintermantel, MuCell technology for injection molding : A processing method for polyether-urethane scaffolds, Journal of material science, 40(2005), 4613–4618.
DOI: 10.1007/s10853-005-0853-y
Google Scholar