Microcellular Foam Injection Molding of Thermoplastics Using Green Physical Blowing Agent

Article Preview

Abstract:

The microcellular injection molding technology, commercially offered by Trexel Inc. and other manufacturers, is primarily a close cell foaming technique. This process is capable of offering light weight non-porous thermoplastics moldings. The foaming of thermoplastics with open cellular morphology has got various high end applications among others like tissue engineering and membrane separation. Some of the researchers were successful in synthesis of open cellular thermoplastics at laboratory scale via solid state batch process. The growing demand for microporous thermoplastics, especially the biodegradable plastics (e.g. Polylactic acid), motivated the researchers develop a specialized microcellular injection molding process for processing of open cell thermoplastics using physical blowing agents such as supercritical nitrogen or carbon dioxide gas. A brief of theoretical and conceptual treatment of microcellular injection molding is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-111

Citation:

Online since:

October 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. P. Suh, Innovation in Polymer Processing, Hanser Gardner Publications, Cincinnati, (1996).

Google Scholar

[2] T. K. Okamoto, Microcellular Processing, Hanser Publications, Cincinnati, (2003).

Google Scholar

[3] J. Xu, Microcellular Injection Molding, John Wiley & Sons, Inc., Hoboken, NJ, (2010).

Google Scholar

[4] L. Singh, V. Kumar, and B. D. Ratner, Generation of porous microcellular 85/15 poly (dl-lactide-co-glycolide) foams for biomedical applications, Biomaterials, 25 (2004) 2611–2617.

DOI: 10.1016/j.biomaterials.2003.09.040

Google Scholar

[5] I. Kikic and F. Vecchione, Supercritical impregnation of polymers, Current Opinion in Solid State and Materials Science, 7(2003) 399–405.

DOI: 10.1016/j.cossms.2003.09.001

Google Scholar

[6] Z. Xinli, H. Xiaoling, G. Ping, and L. Guozheng, Preparation and pore structure of porous membrane by supercritical fluid, The Journal of Supercritical Fluids, 49(2009), 111–116.

DOI: 10.1016/j.supflu.2008.09.021

Google Scholar

[7] P. C. Lee, J. Wang, and C. B. Park, Extrusion of microcellular open-cell LDPE-based sheet foams, Journal of Applied Polymer Science, 102(2006) 3376–3384.

DOI: 10.1002/app.24868

Google Scholar

[8] E. J. Beckman, Supercritical and near-critical CO2 in green chemical synthesis and processing, The Journal of Supercritical Fluids, 28(2004), 121–191.

DOI: 10.1016/s0896-8446(03)00029-9

Google Scholar

[9] S. Cha, Foaming of Super Microcellular Plastics, Massachusetts Institute of Technology, Cambridge, (1994).

Google Scholar

[10] C. Mantelis and T. Meyer, Supercritical Fluids, Encyclopedia Of Polymer Science and Technology, John Wiley & Sons, Inc., (2008).

Google Scholar

[11] J. F. Brennecke and C. A. Eckert, Phase equilibria for supercritical fluid process design, AIChE Journal, 35 (1989), 1409–1427.

DOI: 10.1002/aic.690350902

Google Scholar

[12] J. Peng, L. Turng, and X. Peng, A new microcellular injection molding process for polycarbonate using water as the physical blowing agent, Polymer Engineering & Science, 52 (2012) 1464–1473.

DOI: 10.1002/pen.23092

Google Scholar

[13] D. E. Johnson, US Patent No. 4, 124, 336 (1978).

Google Scholar

[14] Information on http: / www. trexel. com.

Google Scholar

[15] Y. Moon, K. Lee, and S. W. Cha, Bubble growth in mold cavities during microcellular injection molding processes, Journal of Mechanical Science and Technology, 23(2010), 3349–3356.

DOI: 10.1007/s12206-009-0913-3

Google Scholar

[16] H. Huang and J. Wang, Equipment development and experimental investigation on the cellular structure of microcellular injection molded parts, Polymer Testing, 27(2008) 513–519.

DOI: 10.1016/j.polymertesting.2008.02.009

Google Scholar

[17] S. N. S. Leung, Mechanism of Cell Nucleation, Growth and Coarsening in Plastic Foaming: Theory, Simulation and Experiments, University of Toronto, (2009).

Google Scholar

[18] M. Yuan, L. Turng, R. Spindler, D. Caulfield, C. Hunt, and K. Corporation, Microcellular Nanocomposite Injection Molding Process, ANTEC, 1(2003) 691–695.

Google Scholar

[19] J. Lee, L. Turng, E. Dougherty, and P. Gorton, A novel method for improving the surface quality of microcellular injection molded parts, Polymer, 52(2011) 1436–1446.

DOI: 10.1016/j.polymer.2011.01.026

Google Scholar

[20] J. Xu and D. Pierick, Microcellular foam processing in reciprocating screw injection molding machines, Journal of Injection Molding Technology, 5(2001) 152–159.

DOI: 10.1002/9780470642818.ch7

Google Scholar

[21] G. O. Aloku and X. Yuan, Numerical simulation of polymer foaming process in extrusion flow, Chemical Engineering Science, 65(2010) 3749–3761.

DOI: 10.1016/j.ces.2010.03.022

Google Scholar

[22] D. W. Van Krevelen, Properties of Polymer, Elsevier, New York, (1976).

Google Scholar

[23] J. L. Throne, Thermoplastic Foams. Hertford, (1996).

Google Scholar

[24] P. G. Debenedetti and R. C. Reid, Diffusion and mass transfer in supercritical fluids, AIChE J, 32(1986) 2034–(2046).

DOI: 10.1002/aic.690321214

Google Scholar

[25] J. Wang, Rheology of Foaming Polymers and Its Influence on Microcellular Processing, University of Toronto, (2009).

Google Scholar

[26] T. Ishikawa, K. Taki, and M. Ohshima, Polymer Engineering And Science, 52(2012) 875–883.

Google Scholar

[27] W. Zhai, J. Yu, L. Wu, W. Ma, and J. He, Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams, Polymer, 47(2006) 7580–7589.

DOI: 10.1016/j.polymer.2006.08.034

Google Scholar

[28] W. Zhai, J. Yu, and J. He, Ultrasonic irradiation enhanced cell nucleation : An effective approach to microcellular foams of both high cell density and expansion ratio, Polymer, 49(2008), 2430–2434.

DOI: 10.1016/j.polymer.2008.04.002

Google Scholar

[29] D. Mao, J. R. Edwards, and A. Harvey, Prediction of foam growth and its nucleation in free and limited expansion, Chemical Engineering Science, 61(2006) 1836–1845.

DOI: 10.1016/j.ces.2005.07.026

Google Scholar

[30] V. Kumar, Phenomenology of bubble nucleation in the solid-state nitrogen – polystyrene microcellular foams, Colloids and Surfaces A: Physicochem. Eng. Aspects, 263(2005) 336–340.

DOI: 10.1016/j.colsurfa.2004.12.056

Google Scholar

[31] J. R. Youn and N. P. Suh, Processing of Microcellular Polyester Composites, Polymer Composites, 6(1985) 175–180.

DOI: 10.1002/pc.750060308

Google Scholar

[32] J. S. Colton and N. P. Suh, Nucleation of microcellular foam: Theory and practice, Polymer Engineering and Science, 27(1987), 500–503.

DOI: 10.1002/pen.760270704

Google Scholar

[33] C. A. Ward and A. S. Tucker, Thermodynamic Theory of Diffusion-Controlled Bubble Growth or Dissolution and Experimental Examination of the Prediction, Journal of Applied Physics, 46(1975) 233–238.

DOI: 10.1063/1.321327

Google Scholar

[34] M. A. Shaft, K. Joshi, and R. W. Flumerfelt, Bubble size distributions in freely expanded polymer foams, Chemical Engineering Science, 52(1997) 635–644.

DOI: 10.1016/s0009-2509(96)00433-2

Google Scholar

[35] J. Fisher, The Fracture of Liquids, Journal of Applied Physics, 19 (1948) 1062–1067.

Google Scholar

[36] M. Blander and J. L. Katz, Bubble Nucleation in Liquids, AIChE Journal, 21(1975) 833–848.

DOI: 10.1002/aic.690210502

Google Scholar

[37] C. A. Ward and E. Levart, Conditions for Stability of Bubble Nuclei in Solid Surfaces Contacting a Liquid-gas Solution, Journal of Applied Physics, 56(1984), 491–500.

DOI: 10.1063/1.333937

Google Scholar

[38] P. M. Wilt, Nucleation Rates and Bubble Stability in Water-Carbon Dioxide Solutions, Journal of Colloid and Interface Science, 112(1986) 530–538.

DOI: 10.1016/0021-9797(86)90122-0

Google Scholar

[39] N. S. Ramesh, Foam Extrusion Principles and Practice, S. T. Lee, Ed. Lancaster, PA: Technomic Publishing Company, 2000, p.125–144.

Google Scholar

[40] M. Amon and C. D. Denson, A Study of Dynamics of Foam Growth: Analysis of the Growth Closely Spaced Spherical Bubbles, Polymer Engineering & Science, 24(1984) 1026–1034.

DOI: 10.1002/pen.760241306

Google Scholar

[41] A. Arefmanesh and S. G. Advani, Diffusion-induced growth of a gas bubble in a viscoelastic fluid, Rheol. Acta, 30(1991) 274–283.

DOI: 10.1007/bf00366641

Google Scholar

[42] P. Eisenberg and M. P. Tulin, Cavitation, Handbook of Fluid Dynamics, V. Streeter, (Ed. ) New York: McGraw - Hill, (1961).

Google Scholar

[43] D. W. Van Kreevlan, Properties of Polymers: Their Estimation and Correlation with Chemical Structure, Elsevier Scientific Publishing, Armsterdam, (1976).

Google Scholar

[44] S. Han, P. Kennedy, R. Zheng, J. Xu, and L. Kishbaugh, Numerical analysis of microcellular injection molding, Journal of Cellular Plastics, 39(2003) 475–485.

DOI: 10.1177/0021955x03039214

Google Scholar

[45] D. E. Rosner and M. Epstein, Effects of interface kinetics, capillarity and solute diffusion on bubble growth rates inhighly supersaturated liquids, Chemical Engineering Science, 27(1972) 69–88.

DOI: 10.1016/0009-2509(72)80142-8

Google Scholar

[46] B. A. Rodeheaver and J. S. Colton, Open-celled microcellular thermoplastic foam, Polymer Engineering & Science, 41(2001) 380–400.

DOI: 10.1002/pen.10736

Google Scholar

[47] X. Sun, L.S. Trung, E. Dougherty, and P. Gorton, Artificial Neural Network – Based Supercritical Fluid Dosage Control for Microcellular Injection Molding, Advances in Polymer Technology, 31(2012) 7–19.

DOI: 10.1002/adv.20230

Google Scholar

[48] A. H. Behravesh, Extrusion Processing of Low-Density Microcellular Foams, University of Toronto, (1998).

Google Scholar

[49] G. J. F. Breedveld and J. M. Prausnitz, Thermodynamic properties of supercritical fluids and their mixtures at very high pressures, AIChE J, 19(1973) 783–796.

DOI: 10.1002/aic.690190416

Google Scholar

[50] L. Lim, R. Auras, and M. Rubino, Processing technologies for poly ( lactic acid ), Progress in Polymer Science, 33(2008) 820–852.

DOI: 10.1016/j.progpolymsci.2008.05.004

Google Scholar

[51] M. Nobelen, S. Hoppe, C. Fonteix, F. Pla, M. Dupire, and B. Jacques, Modeling of the rheological behavior of polyethylene / supercritical CO2 solutions, Chemical Engineering Science, 61(2006) 5334–5345.

DOI: 10.1016/j.ces.2006.03.052

Google Scholar

[52] R. Murray, J. Weller, and V. Kumar, Solid-state microcellular acrylonitrile-butadiene-styrene foams, Cellular polymers, 19(2000) 413–425.

Google Scholar

[53] S. Huang, G. Wu, and S. Chen, Preparation of open cellular PMMA microspheres by supercritical carbon dioxide foaming, The Journal of Supercritical Fluids, 40(2007) 323–329.

DOI: 10.1016/j.supflu.2006.06.005

Google Scholar

[54] S. N. Leung, C. B. Park, D. Xu, H. Li, and R. G. Fenton, Computer Simulation of Bubble-Growth Phenomena in Foaming, Industrial & Engineering Chemistry Research 45(2006) 7823–7831.

DOI: 10.1021/ie060295a

Google Scholar

[55] Information on https: / www. trexel. com.

Google Scholar

[56] T. Ishikawa and M. Ohshima, Visual observation and numerical studies of polymer foaming behavior of polypropylene/carbon dioxide system in a core‐back injection molding process, Polymer Engineering & Science, 51 (2011) 1617–1625.

DOI: 10.1002/pen.21945

Google Scholar

[57] U. P. Jung, Investigation of Foaming Behavior of Thermoplastic Polyolefin (TPO) Blend, University of Toronto, (2007).

Google Scholar

[58] A. Ameli, D. Jahani, M. Nofar, P. U. Jung, and C. B. Park, Processing and characterization of solid and foamed injection-molded polylactide with talc, Journal of Cellular Plastics, 6(2013), 1–24.

DOI: 10.1177/0021955x13481993

Google Scholar

[59] A. Javadi, Y. Srithep, S. Pilla, J. Lee, S. Gong, and L. Turng, Processing and characterization of solid and microcellular PHBV / coir fi ber composites, Materials Science & Engineering C, 30(2010), 749–757.

DOI: 10.1016/j.msec.2010.03.008

Google Scholar

[60] S. J. A. Rizvi, M. H. Alaei, A. Yadav, and N. Bhatnagar, Quantitative Analysis of Cell Distribution in Injection Molded Microcellular Foam, SPE FOAM 2013, 1–7.

DOI: 10.1177/0021955x14524081

Google Scholar

[61] M. R. Barzegari and D. Rodrigue, The Effect of Injection Molding Conditions on the Morphology of Polymer Structural Foams, Polymer Engineering & Science, 49(2009), 949–959.

DOI: 10.1002/pen.21283

Google Scholar

[62] H. Wu, Microcellular Injection Moulding for an Oesophageal Implant, Lehrstuhl für Medizintechnik Technische Universität München Microcellular, (2009).

Google Scholar

[63] R. S. Lenk, Polymer Rheology. Applied Science Publishers, London, (1978).

Google Scholar

[64] F. J. Gomez-Gomez, D. Arencon, M. A. Sanchez-Soto, A. B. Martinez, F. J. Gómez-gómez, D. Arencón, M. Á. Sánchez-soto, and A. B. Martínez, Influence of the injection moulding parameters on the microstructure and thermal properties of microcellular polyethylene terephthalate glycol foams, Journal of Cellular Plastics, 49(2012).

DOI: 10.1177/0021955x12460044

Google Scholar

[65] S. Chen, H. Li, S. Hwang, and H. Wang, Passive mold temperature control by a hybrid fi lming-microcellular injection molding processing, International Communications in Heat and Mass Transfer, 35(2008), 822–827.

DOI: 10.1016/j.icheatmasstransfer.2008.03.013

Google Scholar

[66] R. Miyamoto, S. Yasuhara, H. Shikuma, and M. Ohshima, Preparation of micro/nanocellular polypropylene foam with crystal nucleating agents, Polymer Engineering & Science, 54(2014), 2075–(2085).

DOI: 10.1002/pen.23758

Google Scholar

[67] Z. Xu, X. Jiang, T. Liu, G. Hu, and L. Zhao, Foaming of polypropylene with supercritical carbon dioxide, J. of Supercritical Fluids, 41(2007), 299–310.

DOI: 10.1016/j.supflu.2006.09.007

Google Scholar

[68] L. M. Matuana, Solid state microcellular foamed poly(lactic acid): Morphology and property characterization, Bioresource Technology, 99(2008), 3643–3650.

DOI: 10.1016/j.biortech.2007.07.062

Google Scholar

[69] Y. . Kim, M. Andover, T. Burnham, and M. Melrose, US 6, 659, 757 B2, (2003).

Google Scholar

[70] C. B. Park and K. L. Cheung, A study of cell nucleation in the extrusion of polypropylene foams, Polymer Engineering & Science, 37(1997), 1–10.

DOI: 10.1002/pen.11639

Google Scholar

[71] Q. Guo, J. Wang, and C. . Park, Visualization of PP Foaming with Nitrogen, SPE ANTEC Tech Papers, 2006, 2736 – 2740.

Google Scholar

[72] M. Guo, M. Heuzey, and P. Carreau, Cell structure and dynamic properties of injection molded polypropylene foams, Polymer Engineering And Science, 47(2007), p.1070.

DOI: 10.1002/pen.20786

Google Scholar

[73] T. Pathak and K. Jayaraman, Polymer Clay Nanocomposites with Improved Melt Strength, in SPE ANTEC Tech. Papers, 2007, p.103.

Google Scholar

[74] C. Marrazzo, E. D. Maio, and S. Iannace, Foaming of synthetic and natural biodegradable polymers, Journal of Cellular Plastics, 43(2007), 123–133.

DOI: 10.1177/0021955x06073214

Google Scholar

[75] M. Xanthos, M. W. Young, G. P. Karayannidis, and D. N. Bikiaris, Reactive modofication of polyethylene terephthalate with polyepoxides, Polymer Engineering & Science, 41(2001), 643–655.

DOI: 10.1002/pen.10760

Google Scholar

[76] Y. Di, S. Iannace, E. Di Maio, and L. . Nicolais, Reactively modified poly(lactic acid): properties and foam processing, Macromolecular Mater. Eng, 290(2005), 1083–1090.

DOI: 10.1002/mame.200500115

Google Scholar

[77] J. H. Aubert and R. L. Clough, Low-density, microcellular polystyrene foams, Polymer, 26(1985), 2047–(2054).

DOI: 10.1016/0032-3861(85)90186-7

Google Scholar

[78] B. Krause, M. . Boerrigter, N. F. . van der Vegt, H. Strathmann, and M. Wessling, Novel open-cellular polysulfone morphologies produced with trace concentrations of solvents as pore opener, Journal of Membrane Science, 187(2001), 181–192.

DOI: 10.1016/s0376-7388(01)00329-5

Google Scholar

[79] A. K. Bledzki and O. Faruk, Injection moulded microcellular wood fibre–polypropylene composites, Composites Part A: Applied Science and Manufacturing, 37(2006), 1358–1367.

DOI: 10.1016/j.compositesa.2005.08.010

Google Scholar

[80] M. Abbasi, S. N. Khorasani, R. Bagheri, and J. M. Esfahani, Microcellular foaming of low-density polyethylene using nano-CaCo3 as a nucleating agent, Polymer Composites, 32(2011), 1718–1725.

DOI: 10.1002/pc.21188

Google Scholar

[81] M. J. Jenkins, K. M. Shakesheff, and S. M. Howdle, Characterisation of microcellular foams produced from semi-crystalline PCL using supercritical carbon dioxide, European Polymer Journal, 42(2006), 3145–3151.

DOI: 10.1016/j.eurpolymj.2006.07.022

Google Scholar

[82] D. Kohlhoff and M. Ohshima, Open Cell Microcellular Foams of Polylactic Acid (PLA)-based Blends with Semi-Interpenetrating Polymer Networks, Macromolecular Materials and Engineering, 296(2011), 770–777.

DOI: 10.1002/mame.201000371

Google Scholar

[83] X. Wang, W. Li, and V. Kumar, A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications, Biomaterials, 27(2006), 1924–(1929).

DOI: 10.1016/j.biomaterials.2005.09.029

Google Scholar

[84] C. Gualandi, L. J. White, L. Chen, R. A. Gross, K. M. Shakesheff, S. M. Howdle, and M. Scandola, Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester, Acta Biomaterialia, 6(2010).

DOI: 10.1016/j.actbio.2009.07.020

Google Scholar

[85] N. Barroca, A. L. Daniel-da-silva, P. M. Vilarinho, and M. H. V Fernandes, Acta Biomaterialia Tailoring the morphology of high molecular weight PLLA scaffolds through bioglass addition, ACTA BIOMATERIALIA, vol. 6, no. 9, p.3611–3620, (2010).

DOI: 10.1016/j.actbio.2010.03.032

Google Scholar

[86] P. Sarazin, X. Roy, and B. D. Favis, Controlled preparation and properties of porous poly ( l -lactide ) obtained from a co-continuous blend of two biodegradable polymers, Biomaterials, 25(2004), 5965–5978.

DOI: 10.1016/j.biomaterials.2004.01.065

Google Scholar

[87] S. Pilla, S. G. Kim, G. K. Auer, S. Gong, and C. B. Park, Microcellular extrusion foaming of poly ( lactide )/ poly ( butylene adipate-co-terephthalate ) blends, Materials Science & Engineering C, 30(2010), 255–262.

DOI: 10.1016/j.msec.2009.10.010

Google Scholar

[88] D. F. Baldwin, T. George, W. Woodru, M. Engineering, and C. B. Park, Microcellular Sheet Extrusion System Process Design Models for Shaping and Cell Growth Control, 3(1998).

DOI: 10.1002/pen.10232

Google Scholar

[89] Trexel, Trexel Introduces New Long Glass Fiber Screw Design For MuCell® Process Which Improves Fiber Length Retention, News, MuCell® Process, Volume XIIIII, (2007).

Google Scholar

[90] P. C. Lee, H. E. Naguib, C. B. Park, and J. Wang, Increase of open-cell content by plasticizing soft regions with secondary blowing agent, Polymer Engineering & Science, 45(2005), 1445–1451.

DOI: 10.1002/pen.20422

Google Scholar

[91] D. Jahani, A. Ameli, P. U. Jung, M. R. Barzegari, C. B. Park, and H. Naguib, Open-cell cavity-integrated injection-molded acoustic polypropylene foams, Materials & Design, 53(2014), 20–28.

DOI: 10.1016/j.matdes.2013.06.063

Google Scholar

[92] R. K. M. Chu, L. H. Mark, D. Jahani, and C. . Park, Injection Molding of Highly Porous Polypropylene Foams, Society of Plastics Engineers, SPE - Annual Technical Conference, (2014).

Google Scholar

[93] R. K. M. Chu, Open-Cell Foaming with Injection Molding by Open-Cell Foaming with Injection Molding, University of Toronto, (2014).

Google Scholar

[94] T. Ishikawa and M. Ohshima, Polypropylene / CO2 foaming in core-back molding, SPE Plastics Research Online, (2011), 2–4.

Google Scholar

[95] S. Leicher, J. Will, H. Haugen, and E. Wintermantel, MuCell technology for injection molding : A processing method for polyether-urethane scaffolds, Journal of material science, 40(2005), 4613–4618.

DOI: 10.1007/s10853-005-0853-y

Google Scholar