p.16
p.24
p.45
p.63
p.77
p.112
p.127
p.137
p.149
Microcellular Foam Injection Molding of Thermoplastics Using Green Physical Blowing Agent
Abstract:
The microcellular injection molding technology, commercially offered by Trexel Inc. and other manufacturers, is primarily a close cell foaming technique. This process is capable of offering light weight non-porous thermoplastics moldings. The foaming of thermoplastics with open cellular morphology has got various high end applications among others like tissue engineering and membrane separation. Some of the researchers were successful in synthesis of open cellular thermoplastics at laboratory scale via solid state batch process. The growing demand for microporous thermoplastics, especially the biodegradable plastics (e.g. Polylactic acid), motivated the researchers develop a specialized microcellular injection molding process for processing of open cell thermoplastics using physical blowing agents such as supercritical nitrogen or carbon dioxide gas. A brief of theoretical and conceptual treatment of microcellular injection molding is presented.
Info:
Periodical:
Pages:
77-111
Citation:
Online since:
October 2016
Authors:
Price:
Сopyright:
© 2016 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] N. P. Suh, Innovation in Polymer Processing, Hanser Gardner Publications, Cincinnati, (1996).
[2] T. K. Okamoto, Microcellular Processing, Hanser Publications, Cincinnati, (2003).
[3] J. Xu, Microcellular Injection Molding, John Wiley & Sons, Inc., Hoboken, NJ, (2010).
[4] L. Singh, V. Kumar, and B. D. Ratner, Generation of porous microcellular 85/15 poly (dl-lactide-co-glycolide) foams for biomedical applications, Biomaterials, 25 (2004) 2611–2617.
[5] I. Kikic and F. Vecchione, Supercritical impregnation of polymers, Current Opinion in Solid State and Materials Science, 7(2003) 399–405.
[6] Z. Xinli, H. Xiaoling, G. Ping, and L. Guozheng, Preparation and pore structure of porous membrane by supercritical fluid, The Journal of Supercritical Fluids, 49(2009), 111–116.
[7] P. C. Lee, J. Wang, and C. B. Park, Extrusion of microcellular open-cell LDPE-based sheet foams, Journal of Applied Polymer Science, 102(2006) 3376–3384.
DOI: 10.1002/app.24868
[8] E. J. Beckman, Supercritical and near-critical CO2 in green chemical synthesis and processing, The Journal of Supercritical Fluids, 28(2004), 121–191.
[9] S. Cha, Foaming of Super Microcellular Plastics, Massachusetts Institute of Technology, Cambridge, (1994).
[10] C. Mantelis and T. Meyer, Supercritical Fluids, Encyclopedia Of Polymer Science and Technology, John Wiley & Sons, Inc., (2008).
[11] J. F. Brennecke and C. A. Eckert, Phase equilibria for supercritical fluid process design, AIChE Journal, 35 (1989), 1409–1427.
[12] J. Peng, L. Turng, and X. Peng, A new microcellular injection molding process for polycarbonate using water as the physical blowing agent, Polymer Engineering & Science, 52 (2012) 1464–1473.
DOI: 10.1002/pen.23092
[13] D. E. Johnson, US Patent No. 4, 124, 336 (1978).
[14] Information on http: / www. trexel. com.
[15] Y. Moon, K. Lee, and S. W. Cha, Bubble growth in mold cavities during microcellular injection molding processes, Journal of Mechanical Science and Technology, 23(2010), 3349–3356.
[16] H. Huang and J. Wang, Equipment development and experimental investigation on the cellular structure of microcellular injection molded parts, Polymer Testing, 27(2008) 513–519.
[17] S. N. S. Leung, Mechanism of Cell Nucleation, Growth and Coarsening in Plastic Foaming: Theory, Simulation and Experiments, University of Toronto, (2009).
[18] M. Yuan, L. Turng, R. Spindler, D. Caulfield, C. Hunt, and K. Corporation, Microcellular Nanocomposite Injection Molding Process, ANTEC, 1(2003) 691–695.
[19] J. Lee, L. Turng, E. Dougherty, and P. Gorton, A novel method for improving the surface quality of microcellular injection molded parts, Polymer, 52(2011) 1436–1446.
[20] J. Xu and D. Pierick, Microcellular foam processing in reciprocating screw injection molding machines, Journal of Injection Molding Technology, 5(2001) 152–159.
[21] G. O. Aloku and X. Yuan, Numerical simulation of polymer foaming process in extrusion flow, Chemical Engineering Science, 65(2010) 3749–3761.
[22] D. W. Van Krevelen, Properties of Polymer, Elsevier, New York, (1976).
[23] J. L. Throne, Thermoplastic Foams. Hertford, (1996).
[24] P. G. Debenedetti and R. C. Reid, Diffusion and mass transfer in supercritical fluids, AIChE J, 32(1986) 2034–(2046).
[25] J. Wang, Rheology of Foaming Polymers and Its Influence on Microcellular Processing, University of Toronto, (2009).
[26] T. Ishikawa, K. Taki, and M. Ohshima, Polymer Engineering And Science, 52(2012) 875–883.
[27] W. Zhai, J. Yu, L. Wu, W. Ma, and J. He, Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams, Polymer, 47(2006) 7580–7589.
[28] W. Zhai, J. Yu, and J. He, Ultrasonic irradiation enhanced cell nucleation : An effective approach to microcellular foams of both high cell density and expansion ratio, Polymer, 49(2008), 2430–2434.
[29] D. Mao, J. R. Edwards, and A. Harvey, Prediction of foam growth and its nucleation in free and limited expansion, Chemical Engineering Science, 61(2006) 1836–1845.
[30] V. Kumar, Phenomenology of bubble nucleation in the solid-state nitrogen – polystyrene microcellular foams, Colloids and Surfaces A: Physicochem. Eng. Aspects, 263(2005) 336–340.
[31] J. R. Youn and N. P. Suh, Processing of Microcellular Polyester Composites, Polymer Composites, 6(1985) 175–180.
DOI: 10.1002/pc.750060308
[32] J. S. Colton and N. P. Suh, Nucleation of microcellular foam: Theory and practice, Polymer Engineering and Science, 27(1987), 500–503.
[33] C. A. Ward and A. S. Tucker, Thermodynamic Theory of Diffusion-Controlled Bubble Growth or Dissolution and Experimental Examination of the Prediction, Journal of Applied Physics, 46(1975) 233–238.
DOI: 10.1063/1.321327
[34] M. A. Shaft, K. Joshi, and R. W. Flumerfelt, Bubble size distributions in freely expanded polymer foams, Chemical Engineering Science, 52(1997) 635–644.
[35] J. Fisher, The Fracture of Liquids, Journal of Applied Physics, 19 (1948) 1062–1067.
[36] M. Blander and J. L. Katz, Bubble Nucleation in Liquids, AIChE Journal, 21(1975) 833–848.
[37] C. A. Ward and E. Levart, Conditions for Stability of Bubble Nuclei in Solid Surfaces Contacting a Liquid-gas Solution, Journal of Applied Physics, 56(1984), 491–500.
DOI: 10.1063/1.333937
[38] P. M. Wilt, Nucleation Rates and Bubble Stability in Water-Carbon Dioxide Solutions, Journal of Colloid and Interface Science, 112(1986) 530–538.
[39] N. S. Ramesh, Foam Extrusion Principles and Practice, S. T. Lee, Ed. Lancaster, PA: Technomic Publishing Company, 2000, p.125–144.
[40] M. Amon and C. D. Denson, A Study of Dynamics of Foam Growth: Analysis of the Growth Closely Spaced Spherical Bubbles, Polymer Engineering & Science, 24(1984) 1026–1034.
[41] A. Arefmanesh and S. G. Advani, Diffusion-induced growth of a gas bubble in a viscoelastic fluid, Rheol. Acta, 30(1991) 274–283.
DOI: 10.1007/bf00366641
[42] P. Eisenberg and M. P. Tulin, Cavitation, Handbook of Fluid Dynamics, V. Streeter, (Ed. ) New York: McGraw - Hill, (1961).
[43] D. W. Van Kreevlan, Properties of Polymers: Their Estimation and Correlation with Chemical Structure, Elsevier Scientific Publishing, Armsterdam, (1976).
[44] S. Han, P. Kennedy, R. Zheng, J. Xu, and L. Kishbaugh, Numerical analysis of microcellular injection molding, Journal of Cellular Plastics, 39(2003) 475–485.
[45] D. E. Rosner and M. Epstein, Effects of interface kinetics, capillarity and solute diffusion on bubble growth rates inhighly supersaturated liquids, Chemical Engineering Science, 27(1972) 69–88.
[46] B. A. Rodeheaver and J. S. Colton, Open-celled microcellular thermoplastic foam, Polymer Engineering & Science, 41(2001) 380–400.
DOI: 10.1002/pen.10736
[47] X. Sun, L.S. Trung, E. Dougherty, and P. Gorton, Artificial Neural Network – Based Supercritical Fluid Dosage Control for Microcellular Injection Molding, Advances in Polymer Technology, 31(2012) 7–19.
DOI: 10.1002/adv.20230
[48] A. H. Behravesh, Extrusion Processing of Low-Density Microcellular Foams, University of Toronto, (1998).
[49] G. J. F. Breedveld and J. M. Prausnitz, Thermodynamic properties of supercritical fluids and their mixtures at very high pressures, AIChE J, 19(1973) 783–796.
[50] L. Lim, R. Auras, and M. Rubino, Processing technologies for poly ( lactic acid ), Progress in Polymer Science, 33(2008) 820–852.
[51] M. Nobelen, S. Hoppe, C. Fonteix, F. Pla, M. Dupire, and B. Jacques, Modeling of the rheological behavior of polyethylene / supercritical CO2 solutions, Chemical Engineering Science, 61(2006) 5334–5345.
[52] R. Murray, J. Weller, and V. Kumar, Solid-state microcellular acrylonitrile-butadiene-styrene foams, Cellular polymers, 19(2000) 413–425.
[53] S. Huang, G. Wu, and S. Chen, Preparation of open cellular PMMA microspheres by supercritical carbon dioxide foaming, The Journal of Supercritical Fluids, 40(2007) 323–329.
[54] S. N. Leung, C. B. Park, D. Xu, H. Li, and R. G. Fenton, Computer Simulation of Bubble-Growth Phenomena in Foaming, Industrial & Engineering Chemistry Research 45(2006) 7823–7831.
DOI: 10.1021/ie060295a
[55] Information on https: / www. trexel. com.
[56] T. Ishikawa and M. Ohshima, Visual observation and numerical studies of polymer foaming behavior of polypropylene/carbon dioxide system in a core‐back injection molding process, Polymer Engineering & Science, 51 (2011) 1617–1625.
DOI: 10.1002/pen.21945
[57] U. P. Jung, Investigation of Foaming Behavior of Thermoplastic Polyolefin (TPO) Blend, University of Toronto, (2007).
[58] A. Ameli, D. Jahani, M. Nofar, P. U. Jung, and C. B. Park, Processing and characterization of solid and foamed injection-molded polylactide with talc, Journal of Cellular Plastics, 6(2013), 1–24.
[59] A. Javadi, Y. Srithep, S. Pilla, J. Lee, S. Gong, and L. Turng, Processing and characterization of solid and microcellular PHBV / coir fi ber composites, Materials Science & Engineering C, 30(2010), 749–757.
[60] S. J. A. Rizvi, M. H. Alaei, A. Yadav, and N. Bhatnagar, Quantitative Analysis of Cell Distribution in Injection Molded Microcellular Foam, SPE FOAM 2013, 1–7.
[61] M. R. Barzegari and D. Rodrigue, The Effect of Injection Molding Conditions on the Morphology of Polymer Structural Foams, Polymer Engineering & Science, 49(2009), 949–959.
DOI: 10.1002/pen.21283
[62] H. Wu, Microcellular Injection Moulding for an Oesophageal Implant, Lehrstuhl für Medizintechnik Technische Universität München Microcellular, (2009).
[63] R. S. Lenk, Polymer Rheology. Applied Science Publishers, London, (1978).
[64] F. J. Gomez-Gomez, D. Arencon, M. A. Sanchez-Soto, A. B. Martinez, F. J. Gómez-gómez, D. Arencón, M. Á. Sánchez-soto, and A. B. Martínez, Influence of the injection moulding parameters on the microstructure and thermal properties of microcellular polyethylene terephthalate glycol foams, Journal of Cellular Plastics, 49(2012).
[65] S. Chen, H. Li, S. Hwang, and H. Wang, Passive mold temperature control by a hybrid fi lming-microcellular injection molding processing, International Communications in Heat and Mass Transfer, 35(2008), 822–827.
[66] R. Miyamoto, S. Yasuhara, H. Shikuma, and M. Ohshima, Preparation of micro/nanocellular polypropylene foam with crystal nucleating agents, Polymer Engineering & Science, 54(2014), 2075–(2085).
DOI: 10.1002/pen.23758
[67] Z. Xu, X. Jiang, T. Liu, G. Hu, and L. Zhao, Foaming of polypropylene with supercritical carbon dioxide, J. of Supercritical Fluids, 41(2007), 299–310.
[68] L. M. Matuana, Solid state microcellular foamed poly(lactic acid): Morphology and property characterization, Bioresource Technology, 99(2008), 3643–3650.
[69] Y. . Kim, M. Andover, T. Burnham, and M. Melrose, US 6, 659, 757 B2, (2003).
[70] C. B. Park and K. L. Cheung, A study of cell nucleation in the extrusion of polypropylene foams, Polymer Engineering & Science, 37(1997), 1–10.
DOI: 10.1002/pen.11639
[71] Q. Guo, J. Wang, and C. . Park, Visualization of PP Foaming with Nitrogen, SPE ANTEC Tech Papers, 2006, 2736 – 2740.
[72] M. Guo, M. Heuzey, and P. Carreau, Cell structure and dynamic properties of injection molded polypropylene foams, Polymer Engineering And Science, 47(2007), p.1070.
DOI: 10.1002/pen.20786
[73] T. Pathak and K. Jayaraman, Polymer Clay Nanocomposites with Improved Melt Strength, in SPE ANTEC Tech. Papers, 2007, p.103.
[74] C. Marrazzo, E. D. Maio, and S. Iannace, Foaming of synthetic and natural biodegradable polymers, Journal of Cellular Plastics, 43(2007), 123–133.
[75] M. Xanthos, M. W. Young, G. P. Karayannidis, and D. N. Bikiaris, Reactive modofication of polyethylene terephthalate with polyepoxides, Polymer Engineering & Science, 41(2001), 643–655.
DOI: 10.1002/pen.10760
[76] Y. Di, S. Iannace, E. Di Maio, and L. . Nicolais, Reactively modified poly(lactic acid): properties and foam processing, Macromolecular Mater. Eng, 290(2005), 1083–1090.
[77] J. H. Aubert and R. L. Clough, Low-density, microcellular polystyrene foams, Polymer, 26(1985), 2047–(2054).
[78] B. Krause, M. . Boerrigter, N. F. . van der Vegt, H. Strathmann, and M. Wessling, Novel open-cellular polysulfone morphologies produced with trace concentrations of solvents as pore opener, Journal of Membrane Science, 187(2001), 181–192.
[79] A. K. Bledzki and O. Faruk, Injection moulded microcellular wood fibre–polypropylene composites, Composites Part A: Applied Science and Manufacturing, 37(2006), 1358–1367.
[80] M. Abbasi, S. N. Khorasani, R. Bagheri, and J. M. Esfahani, Microcellular foaming of low-density polyethylene using nano-CaCo3 as a nucleating agent, Polymer Composites, 32(2011), 1718–1725.
DOI: 10.1002/pc.21188
[81] M. J. Jenkins, K. M. Shakesheff, and S. M. Howdle, Characterisation of microcellular foams produced from semi-crystalline PCL using supercritical carbon dioxide, European Polymer Journal, 42(2006), 3145–3151.
[82] D. Kohlhoff and M. Ohshima, Open Cell Microcellular Foams of Polylactic Acid (PLA)-based Blends with Semi-Interpenetrating Polymer Networks, Macromolecular Materials and Engineering, 296(2011), 770–777.
[83] X. Wang, W. Li, and V. Kumar, A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications, Biomaterials, 27(2006), 1924–(1929).
[84] C. Gualandi, L. J. White, L. Chen, R. A. Gross, K. M. Shakesheff, S. M. Howdle, and M. Scandola, Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester, Acta Biomaterialia, 6(2010).
[85] N. Barroca, A. L. Daniel-da-silva, P. M. Vilarinho, and M. H. V Fernandes, Acta Biomaterialia Tailoring the morphology of high molecular weight PLLA scaffolds through bioglass addition, ACTA BIOMATERIALIA, vol. 6, no. 9, p.3611–3620, (2010).
[86] P. Sarazin, X. Roy, and B. D. Favis, Controlled preparation and properties of porous poly ( l -lactide ) obtained from a co-continuous blend of two biodegradable polymers, Biomaterials, 25(2004), 5965–5978.
[87] S. Pilla, S. G. Kim, G. K. Auer, S. Gong, and C. B. Park, Microcellular extrusion foaming of poly ( lactide )/ poly ( butylene adipate-co-terephthalate ) blends, Materials Science & Engineering C, 30(2010), 255–262.
[88] D. F. Baldwin, T. George, W. Woodru, M. Engineering, and C. B. Park, Microcellular Sheet Extrusion System Process Design Models for Shaping and Cell Growth Control, 3(1998).
DOI: 10.1002/pen.10232
[89] Trexel, Trexel Introduces New Long Glass Fiber Screw Design For MuCell® Process Which Improves Fiber Length Retention, News, MuCell® Process, Volume XIIIII, (2007).
[90] P. C. Lee, H. E. Naguib, C. B. Park, and J. Wang, Increase of open-cell content by plasticizing soft regions with secondary blowing agent, Polymer Engineering & Science, 45(2005), 1445–1451.
DOI: 10.1002/pen.20422
[91] D. Jahani, A. Ameli, P. U. Jung, M. R. Barzegari, C. B. Park, and H. Naguib, Open-cell cavity-integrated injection-molded acoustic polypropylene foams, Materials & Design, 53(2014), 20–28.
[92] R. K. M. Chu, L. H. Mark, D. Jahani, and C. . Park, Injection Molding of Highly Porous Polypropylene Foams, Society of Plastics Engineers, SPE - Annual Technical Conference, (2014).
[93] R. K. M. Chu, Open-Cell Foaming with Injection Molding by Open-Cell Foaming with Injection Molding, University of Toronto, (2014).
[94] T. Ishikawa and M. Ohshima, Polypropylene / CO2 foaming in core-back molding, SPE Plastics Research Online, (2011), 2–4.
[95] S. Leicher, J. Will, H. Haugen, and E. Wintermantel, MuCell technology for injection molding : A processing method for polyether-urethane scaffolds, Journal of material science, 40(2005), 4613–4618.