A Novel Biodegradable Cinnamic Acid Grafted Carboxymethyl Cellulose Based Flocculant for Water Treatment

Article Preview

Abstract:

Cinnamic acid grafted carboxymethyl cellulose (CMC-g-P (CA)) has been synthesized by microwave assisted technique, which is an alliance of microwave radiation with chemical free radical initiator (CAN) to commence grafting. The novel graft copolymer has been characterized by physicochemical techniques – FTIR spectroscopy, intrinsic viscosity measurement, elemental analysis (C, H and N), SEM micrograph and TGA study. The flocculation efficacy and range of turbidity during the sedimentation stage for synthesized material has been investigated in kaolin suspension by ‘Jar test’ procedure. The optimal dosage of CMC-g-P (CA) as flocculant in kaolin suspension is at 10 ppm and it showed lowest range of turbidity (176-61 NTU) during sedimentation stage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-166

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. J. Gonzalez-Munoz, A. Pena, I. Meseguer, Role of beer as a possible protective factor in preventing Alzheimer's disease, Food and Chemical Toxicology. 46 (2008) 49-56.

DOI: 10.1016/j.fct.2007.06.036

Google Scholar

[2] C. Banerjee, S. Ghosh, G. Sen, S. Mishra, P. Shukla, R. Bandopadhyay, Study of algal biomass harvesting using cationic guar gum from the natural plant source as flocculant, Carbohydrate Polymers. 92 (2013) 675-681.

DOI: 10.1016/j.carbpol.2012.09.022

Google Scholar

[3] P. Rani, G. Sen, S. Mishra, U. Jha, Microwave assisted synthesis of poly-acrylamide grafted gum ghatti and its application as flocculant, Carbohydrate Polymers. 89 (2012) 275-281.

DOI: 10.1016/j.carbpol.2012.03.009

Google Scholar

[4] G. Sen, R. Kumar, S. Ghosh, S. Pal, A Novel polymeric flocculant based on polyacrylamide grafed carboxymethylstarch, Carbohydrate Polymers. 77 (2009) 822-831.

DOI: 10.1016/j.carbpol.2009.03.007

Google Scholar

[5] G. Sen, S. Pal, Microwave initiated synthesis of polyacrylamide grafted carboxymethyl starch (CMS-g-PAM): Application as a novel matrix for sustained drug release, International Journal of Biological Macromolecules. 45 (2009) 48-55.

DOI: 10.1016/j.ijbiomac.2009.03.012

Google Scholar

[6] G. Sen, S. Pal, Polyacrylamide grafted carboxymethyl Tamarind (CMT- g-PAM): development and application of a novel polymeric flocculant, Macromolecular Symposium. 277 (2009) 100-111.

DOI: 10.1002/masy.200950313

Google Scholar

[7] S. Sinha, S. Mishra, G. Sen, Microwave initiated synthesis of polyacrylamide grafted casein (CAS-g-PAM) – Its application as a flocculant, International Journal of Biological Macromolecules. 60 (2013) 141-147.

DOI: 10.1016/j.ijbiomac.2013.05.012

Google Scholar

[8] S.K. Bajpai, S. Dubey, Synthesis and swelling kinetics of a pH- sensitive terpolymeric hydrogel system, Iranian Polymer Journal. 13 (2004) 189-203.

Google Scholar

[9] D.D. McMollister, C.L. Hake, S.E. Sadek, V.K. Rowe, Toxicologic investigation of polyacrylamide, Toxicol. Appl. Pharmacol. 7 (1965) 639-651.

Google Scholar

[10] L. Liu, W.R. Hudgins, S. Shack, M.Q. Yin, D. Samid, Cinnamic acid: A natural product with potential use in cancer intervention, Int. J. Cancer. 62 (1995) 345-350.

DOI: 10.1002/ijc.2910620319

Google Scholar

[11] N. Bouslah, F. Amrani, Miscibility and specific interaction in blends of poly [(styrene)-co-(cinnamic acid)] with poly [(methyl methacrylate) and modified poly (methyl methacrylate), Express Polymer Letter. 1 (2007) 44-50.

DOI: 10.3144/expresspolymlett.2007.9

Google Scholar

[12] X. Zhang, H. Meng, Y. Di, Synthesis and characterization of cinnamic acid- grafted Poly (vinylidene fluoride) microporous membrane, Energy Procedia. 17 (2012) 1850- 1857.

DOI: 10.1016/j.egypro.2012.02.322

Google Scholar

[13] S. Mishra, S. Sinha, K.P. Dey, G. Sen, Synthesis, Characterization and application of polymethylmethacrylate grafted psyllium as flocculant, Carbohydrate Polymers. 99 (2014) 462-468.

DOI: 10.1016/j.carbpol.2013.08.047

Google Scholar

[14] R. Rahul, U. Jha, G. Sen, S. Mishra, A Novel polymeric flocculant based on polyacrylamide grafted inulin: Aqueous microwave assisted synthesis, Carbohydrate Polymers. 99 (2014) 11-21.

DOI: 10.1016/j.carbpol.2013.07.082

Google Scholar

[15] V.R. Gowariker, N.V. Viswanathan, J. Sreedhar, Polymer science, New age International (p) Ltd, (1986).

Google Scholar

[16] E.A. Collins, J. Bares, F.W. Billmeyer, Experiments in polymer science, John Wiley & Sons, NewYork, (1973).

Google Scholar

[17] C. Banerjee, P. Gupta, S. Mishra, G. Sen, P. Shukla, R. Bandopadhyay, Study of polyacrylamide grafted starch based algal flocculant towards application in algal biomass harvesting, International Journal of Biological Macromolecules. 51 (2012).

DOI: 10.1016/j.ijbiomac.2012.06.011

Google Scholar

[18] S. Mishra, U. Rani, G. Sen, Microwave initiated synthesis and application of polyacrylic acid grafted carboxymethyl cellulose, Carbohydrate Polymers. 87 (2012) 2255-2262.

DOI: 10.1016/j.carbpol.2011.10.057

Google Scholar

[19] S. Mishra, G. Sen, G.U. Rani, S. Sinha, Microwave assisted synthesis of polyacrylamide grafted agar (Ag-g-PAM) and its application as a flocculant for waste water treatment, International Journal of Biological Macromolecules. 49 (2011) 591-598.

DOI: 10.1016/j.ijbiomac.2011.06.015

Google Scholar

[20] S. Mishra, A. Mukul, G. Sen, U. Jha, Microwave assisted synthesis of poly-acrylamide grafted starch (St-g-PAM) and its applicability as flocculant for water treatment, International Journal of Biological Macromolecule. 48 (2011) 106-11.

DOI: 10.1016/j.ijbiomac.2010.10.004

Google Scholar

[21] S. Mishra, G. Sen, Microwave initiated synthesis of polymethyl-methacrylate grafted guar (GG-g-PMMA), characterizations and applications, International Journal of Biological Macromolecules. 48 (2011) 688-694.

DOI: 10.1016/j.ijbiomac.2011.02.013

Google Scholar

[22] R.P. Singh, Advanced drag reducing and flocculating materials based on polysaccharides, in: N. Prasad, J. E. Mark, T. J. Fai (Eds. ), Polymers and Other Advanced Materials: Emerging Technologies and Business Opportunities, Plenum Press, New York, 1995, pp.227-249.

DOI: 10.1007/978-1-4899-0502-4_24

Google Scholar

[23] R.P. Singh, G.P. Karmakar, S.K. Rath, N.C. Karmakar, S.R. Pandey, T. Tripathy, Biodegradable drag reducing agents and flocculants based on polysaccharides: Materials and applications, Polymer Engineering & Science. 40 (2000) 46-60.

DOI: 10.1002/pen.11138

Google Scholar

[24] W. Brostow, S. Pal, R.P. Singh, A model of flocculation, Materials Letters. 61 (2007) 438-4384.

DOI: 10.1016/j.matlet.2007.02.007

Google Scholar

[25] S. Pal, G. Sen, S. Ghosh, R.P. Singh, High performance polymeric flocculants based on modified polysaccharides – Microwave assisted synthesis, Carbohydrate Polymers. 87 (2012) 336-342.

DOI: 10.1016/j.carbpol.2011.07.052

Google Scholar

[26] R. Rahul, S. Kumar, U. Jha, G. Sen, Cationic inulin: A plant based natural biopolymer for algal biomass harvesting, International Journal of Biological Macromolecules. 72 (2015) 868-874.

DOI: 10.1016/j.ijbiomac.2014.09.039

Google Scholar

[27] P. Rani, S. Mishra, G. Sen, Microwave based synthesis of polymethyl methacrylate grafted sodium alginate: its application as flocculant, Carbohydrate Polymers. 91 (2013) 686-692.

DOI: 10.1016/j.carbpol.2012.08.023

Google Scholar