Ultrahigh-Temperature Oxidation of 4H-SiC(0001) and an Impact of Cooling Process on SiO2/SiC Interface Properties

Article Preview

Abstract:

This paper reviews our recent work on ultrahigh-temperature oxidation of 4H-SiC(0001) surfaces. Our rapid thermal oxidation experiments demonstrated the reaction-limited linear growth at temperatures ranging from 1200 to 1600°C. The Arrhenius plot of linear growth rate of thermal oxidation can be fitted by a linear line, and the activation energy of oxide growth in dry O2 oxidation was estimated to be 2.9 eV. We also found that unintentional oxidation during the cooling down process severely degrades SiO2/SiC interface properties, resulting in positive flatband voltage shift (VFB) and hysteresis in capacitance-voltage (C-V) characteristics regardless of oxidation temperature. By effectively suppressing oxide growth during the cooling process, we have clarified that SiO2/SiC interface properties depend on oxidation temperature and the lowest interface state density was obtained for the oxide formed at 1450°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

323-326

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Rozen, S. Dhar, S. K. Dixit, V. V. Afanas'ev, F. O. Roberts, H. L. Dang, S. Wang, S. T. Pantelides, J. R. Williams and L. C. Feldman, Increase in oxide hole trap density associated with nitrogen incorporation at the SiO2/SiC interface, J. Appl. Phys. 103 (2008).

DOI: 10.1063/1.2940736

Google Scholar

[2] Y. Katsu, T. Hosoi, Y. Nanen, T. Kimoto, T. Shimura and H. Watanabe, Impact of NO annealing on flatband voltage instability due to charge trapping in SiC MOS devices, Mater. Sci. Forum 858 (2016) 599-602.

DOI: 10.4028/www.scientific.net/msf.858.599

Google Scholar

[3] S. M. Thomas, M. R. Jennings, Y. K. Sharma, C. A. Fisher and P. A. Mawby, Impact of the oxidation temperature on the interface trap density in 4H-SiC MIS capacitors, Mater. Sci. Forum 778-780 (2014) 599-602.

DOI: 10.4028/www.scientific.net/msf.778-780.599

Google Scholar

[4] H. Naik and T. P. Chow, 4H-SiC MOS capacitors and MOSFET fabrication with gate oxidation at 1400°C, Mater. Sci. Forum 778-780 (2014) 607-610.

DOI: 10.4028/www.scientific.net/msf.778-780.607

Google Scholar

[5] S. M. Thomas, Y. K. Sharma, M. A. Crouch, C. A. Fisher, A. Perez-Tomas, M. R. Jennings and P. A. Mawby, Enhanced field effect mobility on 4H-SiC by oxidation at 1500°C, IEEE J. Electron. Dev. Soc. 2 (2014) 114-117.

DOI: 10.1109/jeds.2014.2330737

Google Scholar

[6] T. Hosoi, D. Nagai, M. Sometani, Y. Katsu, H. Takeda, T. Shimura, M. Takei and H. Watanabe, submitted to Appl. Phys. Lett.

Google Scholar

[7] Y. Song, S. Dhar, L. C. Feldman, G. Chung, and J. R. Williams, Modified Deal Grove model for the thermal oxidation of silicon carbide, J. Appl. Phys. 95 (2004) 4953.

DOI: 10.1063/1.1690097

Google Scholar

[8] T. Akiyama, A. Ito, K. Nakamura, T. Ito, H. Kageshima, M. Uematsu, K. Shiraishi, First-principles investigations for oxidation reaction processes at 4H-SiC/SiO2 interface and its orientation dependence, Surf. Sci. 641 (2015) 174-179.

DOI: 10.1016/j.susc.2015.06.028

Google Scholar