Effect of 3C-SiC Irradiation with 8 MeV Protons

Article Preview

Abstract:

Effects of proton irradiation in n-3C-SiC grown by sublimation on a 4H-SiC substrate have been studied by the Hall effect and photoluminescence methods. It was found that the carrier removal rate (Vd) reaches a value of ~110 cm-1. The full compensation of samples with an initial concentration of (1-2) x 1018 cm -3 was estimated to occur at doses of about 6 x 1015 cm -2. Compared with 4H and 6H silicon carbide, no significant increase in the intensity of so-called "defective" photoluminescence was observed in 3C-SiC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

311-314

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur Edit, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe. John Wiley & Sons, Hoboken. NJ. (2001).

Google Scholar

[2] Yamanaka M., Daimond H., Sakum E., Misawa S., Yoshida S. Temperature dependence of electrical properties of n-and p-type 3C-SiC / J. Appl. Phys. V. 61. N 2, (1987) 599.

DOI: 10.1063/1.338211

Google Scholar

[3] J. A. Lely, Darstelling von Eikristallen von Silicium carbide und Behernschung von Art und Menge der eingebautem Veranreingungen, Ber. Dt. Keram. Ges. 32, 229 (1955).

Google Scholar

[4] Yu. M. Tairov and V. F. Tsvetkov, Investigation of growth processes of ingots of silicon carbide single crystals, J. Cryst. Growth 43, (1978) 209.

DOI: 10.1016/0022-0248(78)90169-0

Google Scholar

[5] S. N. Gorin and L. M. Ivanova, Cubic Silicon Carbide (3C-SiC): Structure and Properties of Single Crystals Grown by Thermal Decomposition of Methyl Trichlorosilane in Hydrogen (pages 221–245) Phys. Status Solidi B 202, (1997) 221.

DOI: 10.1002/1521-3951(199707)202:1<221::aid-pssb221>3.0.co;2-l

Google Scholar

[6] S. Nishino, J. Powel, and N. A. Will, Production of large‐area single‐crystal wafers of cubic SiC for semiconductor devices Appl. Phys. Lett. 42, (1983) 460.

DOI: 10.1063/1.93970

Google Scholar

[7] A. A. Lebedev, Heterojunction and Supperlattice based on Silicon Carbide, Semicond. Sci. Technol. 21, (2006) R17.

Google Scholar

[8] D.V. Davydov, A. A. Lebedev, A. S. Tregubova, V.V. Kozlovski, A.N. Kuznetsov, E.V. Bogdanova, Investigation of 3C-SiC Epitaxial Layers Grown by Sublimation Epitaxy, Mat. Sci. Forum 338–342, (2000) 221.

DOI: 10.4028/www.scientific.net/msf.338-342.221

Google Scholar

[9] A. A. Lebedev, V. V. Zelenin, P. L. Abramov, E. V. Bogdanova S. P. Lebedev, D. K. Nel'son, B. S. Razbirin, M. P. Shcheglov, A. S. Tregubova, M. Suvajarvi, and R. Yakimova, A Study of Thick 3C-SiC Epitaxial Layers Grown on 6H-SiC Substrates by Sublimation Epitaxy in Vacuum, Semiconductors 41, (2007).

DOI: 10.1134/s1063782607030037

Google Scholar

[10] A. A. Lebedev, A. I. Veinger, D. V. Davydov, V. V. Kozlovski, N. S. Savkina and A. M. Strel'chuk Doping of n-type 6H–SiC and 4H–SiC with defects created with a proton beam J. Appl. Phys V 88, N 11, (2000) pp.6265-6271.

DOI: 10.1063/1.1309055

Google Scholar

[11] A.A. Lebedev, B. Ya. Ber, N.V. Seredova, D. Yu Kazantsev, V.V. Kozlovski, Radiation-stimulated photoluminescence in electron irradiated 4H-SiC, Journal of Physics D: Applied Physics, 48, (2015) 485106.

DOI: 10.1088/0022-3727/48/48/485106

Google Scholar