10+ kV Implantation-Free 4H-SiC PiN Diodes

Article Preview

Abstract:

Implantation-free mesa etched 10+ kV 4H-SiC PiN diodes are fabricated, measured and analyzed by device simulation. An area-optimized junction termination extension (O-JTE) is implemented in order to achieve a high breakdown voltage. The diodes design allows a high breakdown voltage of about 19.3 kV according to simulations by Sentaurus TCAD. No breakdown voltage is recorded up to 10 kV with a very low leakage current of 0.1 μA. The current spreading within the thick drift layer is considered and a voltage drop (VF) of 8.3 V and 11.4 V are measured at 50 A/cm2 and 100 A/cm2, respectively. The differential on-resistance (Diff. Ron) of 67.7 mΩ.cm2 and 55.7 mΩ.cm2 are measured at 50 A/cm2 and 100 A/cm2, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

423-426

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Östling, Silicon Carbide Based Power Devices, in IEEE Electron Devices Meeting (IEDM), 2010, 13. 3. 1-13. 3. 4.

Google Scholar

[2] T. Kimoto and J. A. Cooper, FUNDAMENTALS OF SILICON CARBIDE TECHNOLOGY. Wiley & Sons, 2014. Fig. 4. Measured and simulated reverse characteristics of the fabricated PiN diodes at room temperature.

Google Scholar

[3] H. Niwa, G. Feng, J. Suda, and T. Kimoto, Breakdown Characteristics of 15-kV-Class 4H-SiC PiN Diodes With Various Junction Termination Structures, IEEE trans. Electron Devices 59 (2012) 2748.

DOI: 10.1109/ted.2012.2210044

Google Scholar

[4] R. Ghandi, B. Buono, M. Domeij, G. Malm, C. -M. Zetterling, M. Ostling, High-Voltage 4H-SiC PiN Diodes With Etched Junction Termination Extension, IEEE Electron Device Lett. 30 (2009) 1170.

DOI: 10.1109/led.2009.2030374

Google Scholar

[5] A. Salemi, H. Elahipanah, G. Malm, C. -M. Zetterling, and M. Östling, Area- and Efficiency-Optimized Junction Termination for a 5. 6 kV SiC BJT Process with Low, in Proc. IEEE 27th ISPSD, (2015) 249-252.

DOI: 10.1109/ispsd.2015.7123436

Google Scholar

[6] A. Salemi, H. Elahipanah, B. Buono, C. -M. Zetterling, and M. Östling, Area-Optimized JTE Simulations for 4. 5 kV Non Ion-Implanted SiC BJT, Mater. Sci. Forum 740–742 (2013) 974–977.

DOI: 10.4028/www.scientific.net/msf.740-742.974

Google Scholar

[7] H. Elahipanah, A. Salemi, C. Zetterling, M. Östling, Modification of Etched Junction Termination Extension for the High Voltage 4H-SiC Power Devices, Mater. Sci. Forum 858 (2016) 978-981.

DOI: 10.4028/www.scientific.net/msf.858.978

Google Scholar

[8] B. A. Hulla, J. J. Sumakeris, M. K. Das, J. T. Richmond, and J. Palmour, Progress on the Development of 10 kV 4H-SiC PiN Diodes for HighCurrent/High Voltage Power Handling Applications, Mater. Sci. Forum 556–557 (2007) 895–900.

DOI: 10.4028/www.scientific.net/msf.556-557.895

Google Scholar

[9] A. Salemi, H. Elahipanah, B. Buono, A. Hallen, J. U. Hassan, P. Bergman, G. Malm, C. M. Zetterling, and M. Ostling, Conductivity modulated on-axis 4H-SiC 10+ kV PiN diodes, Proc. Int. Symp. Power Semicond. Devices ICs, (2015) 269–272.

DOI: 10.1109/ispsd.2015.7123441

Google Scholar

[10] S. Sundaresan, C. Sturdevant, M. Marripelly, E. Lieser, R. Singh, and G. Semiconductor, 12 . 9 kV SiC PiN diodes with low on-state drops and high carrier lifetimes, Mater. Sci. Forum 717–720 (2012) 949–952.

DOI: 10.4028/www.scientific.net/msf.717-720.949

Google Scholar

[11] S. Sundaresan, M. Marripelly, S. Arshavsky, R. Singh, 15 kV SiC PiN diodes achieve 95% of avalanche limit and stable long-term operation, Proc. Int. Symp. Power Semicond. Devices ICs (2013) 175–177.

DOI: 10.1109/ispsd.2013.6694474

Google Scholar

[12] H. Niwa, J. Suda, and T. Kimoto, 21. 7 kV 4H-SiC PiN diode with a Space-Modulated Junction Termination Extension, Appl. Phys. Express 5 (2012) 4–6.

DOI: 10.1143/apex.5.064001

Google Scholar

[13] L. Lanni, B. G. Malm, M. Östling, and C. M. Zetterling, SiC etching and sacrificial oxidation effects on the performance of 4H-SiC BJTs, Mater. Sci. Forum 778 (2014) 1005–1008.

DOI: 10.4028/www.scientific.net/msf.778-780.1005

Google Scholar

[14] L. Lanni, B. G. Malm, S. Member, and M. Östling, Influence of Passivation Oxide Thickness and Device Layout on the Current Gain of SiC BJTs, IEEE Electron Device Lett. 36 (2015) 11–13.

DOI: 10.1109/led.2014.2372036

Google Scholar

[15] D. Stefanakis and K. Zekentes, TCAD models of the temperature and doping dependence of the bandgap and low field carrier mobility in 4H-SiC, Microelectron. Eng. 116 (2014) 65–71.

DOI: 10.1016/j.mee.2013.10.002

Google Scholar

[16] A. O. Konstantinov, Q. Wahab, N. Nordell, and U. Lindefelt, Ionization Rates and Critical Fields in 4H SiC Junction Devices, Mater. Sci. Forum 264–268 (1998) 513–516.

DOI: 10.4028/www.scientific.net/msf.264-268.513

Google Scholar