High Temperature High Current Gain IC Compatible 4H-SiC Phototransistor

Article Preview

Abstract:

This paper presents our in-house fabricated 4H-SiC n-p-n phototransistors. The wafer mapping of the phototransistor on two wafers shows a mean maximum forward current gain (βFmax) of 100 at 25 °C. The phototransistor with the highest βFmax of 113 has been characterized from room temperature to 500 °C. βFmax drops to 51 at 400 °C and remains the same at 500 °C. The photocurrent gain of the phototransistor is 3.9 at 25 °C and increases to 14 at 500 °C under the 365 nm UV light with the optical power of 0.31 mW. The processing of the phototransistor is same to our 4H-SiC-based bipolar integrated circuits, so it is a promising candidate for 4H-SiC opto-electronics on-chip integration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

832-836

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Hou, P.-E. Hellström, C.-M. Zetterling and M. Östling, Scaling and modeling of high temperature 4H-SiC pin photodiodes, IEEE Journal of the Electron Devices Society 6 (1), 139- 145 (2018).

DOI: 10.1109/jeds.2017.2785618

Google Scholar

[2] M. Razeghi and A. Rogalski, Semiconductor ultraviolet detectors, Journal of Applied Physics 79, 7433-7573 (1996).

DOI: 10.1063/1.362677

Google Scholar

[3] S. Hou, P.-E. Hellström, C.-M. Zetterling and M. Östling, 550° C 4H-SiC pin photodiode array with two-layer metallization, IEEE Electron Device Letters 37 (12), 1594-1596 (2016).

DOI: 10.1109/led.2016.2618122

Google Scholar

[4] M. Shakir, S. Hou, B. G. Malm, M. Östling and C. Zetterling, A 600 °C TTL-based 11-stage ring oscillator in bipolar silicon carbide technology, IEEE Electron Device Letters 39 (10), 1540-1543 (2018).

DOI: 10.1109/led.2018.2864338

Google Scholar

[5] L. Lanni, B. G. Malm, M. Östling and C.-M. Zetterling, Influence of passivation oxide thickness and device layout on the current gain of SiC BJTs, IEEE Electron Device Letters 36 (1), 11-13 (2015).

DOI: 10.1109/led.2014.2372036

Google Scholar

[6] L. Lanni, B. G. Malm, M. Östling and C.-M. Zetterling, Lateral PNP transistors and complementary SiC bipolar technology, IEEE Electron Device Letters 35 (4), 428-430 (2014).

DOI: 10.1109/led.2014.2303395

Google Scholar