General Model of Diffusion of Interstitial Oxygen in Silicon, Germanium and Silicon - Germanium Crystals

Article Preview

Abstract:

A theoretical modelling of the oxygen diffusivity in silicon, germanium and Si1-xGex (O) crystals both at normal and high hydrostatic pressure has been carried out using molecular mechanics, semiempirical and ab initio methods. It was established that the diffusion process of an interstitial oxygen atom (Oi) is controlled by the optimum configuration of three silicon (germanium) atoms nearest to Oi. The calculated values of the activation energy Ea (Si) = 2.59 eV, Ea(Ge) = 2.05 eV and pre-exponential factor D0(Si) = 0.28 cm2 s−1, D0(Ge) = 0.39 cm2 s−1 are in good agreement with experimental ones and for the first time describe perfectly the experimental temperature dependence of the Oi diffusion constant in Si crystals (T = 350–1200 °C). Hydrostatic pressure (P ≤ 80 kbar) results in a linear decrease of the diffusion barrier (∂P Ea (P) = −4.38 × 10−3 eV kbar−1 for Si crystals). The calculated pressure dependence of Oi diffusivity in silicon crystals agrees well with the pressure-enhanced initial growth of oxygen-related thermal donors. The simulation (PM5) has revealed that in Si1-xGex crystals there are two mechanisms of variation of Oi diffusion barrier. The increase of lattice constant leads to the linear increase of the diffusion barrier. Strains around Ge atoms decrease the diffusion barrier. Formation of gradient of diffusion barrier in the volume of Si1-xGex may be responsible for the experimentally observed suppression of generation of TD in Si1-xGex (O) crystals.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 108-109)

Pages:

413-418

Citation:

Online since:

December 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. C. Mikkelsen: Matter. Res. Soc. Symp. Proc Vol. 59 (1986), p.19.

Google Scholar

[2] M. Saito and A. Oshiyama: Phys. Rev. B Vol. 38 (1988), p.10711.

Google Scholar

[3] A. Oshiyama and M. Saito: Defect Control in Semiconductors (Elsiver Science Publishers, North-Holland 1990), p.193.

Google Scholar

[4] L. C. Snyder and J. W. Corbett: Mater. Res. Soc. Symp. Proc. Vol. 59 (1986), p.207.

Google Scholar

[5] L. C. Snyder, J. W. Corbett, P. Deak, R. Wu: Mater. Res. Soc. Symp. Proc. Vol. 104 (1988), p.179.

Google Scholar

[6] P. J. Kelly: Mater. Sci. Forum Vol. 38-41 (1989), p.269.

Google Scholar

[7] Z . Jiang and R. A. Brown: Phys. Rev. Lett. Vol. 74 (1995), p. (2046).

Google Scholar

[8] M. Ramamoorthy and S. T. Pantelides: Phys. Rev. Lett. Vol. 76 (1996), p.267.

Google Scholar

[9] P. Hänggi, P. Talkner and M. Borcovec: Rev. Mod. Phys. Vol. 62 (1990), p.251.

Google Scholar

[10] I .N. Levine: Quantum Chemistry (Prentice Hall, NJ 07458, 1999).

Google Scholar

[11] R .C. Newman and B. Jones: Oxygen in Silicon, Semiconductors and Semimetals (Academic Press, London) Vol. 42 (1994), p.209.

Google Scholar

[12] R. C. Newman: J. Phys.: Condens. Matter. Vol. 12 (2000), p. R335.

Google Scholar

[13] M. Pesola, J. von Boehm, T. Mattila, et al: Phys. Rev. B Vol. 60 (1999), p.11449.

Google Scholar

[14] J. Coutinho, R. Jones, P. R. Briddon, et al: Phys. Rev. B Vol. 62 (2000), p.10824.

Google Scholar

[15] Vasilii Gusakov: Journal of Physics: Condensed Matter (2005), CM/198656/SYM (in press).

Google Scholar

[16] J. W, Corbett, R. S. McDonald, G. D. Watkins: J. Phys. Chem. Solids Vol. 25 (1964), p.873.

Google Scholar

[17] A. Misiuk: Mater. Phys. Mech. Vol. 1 (2000), p.119.

Google Scholar

[18] V. V. Emtsev, B. A. Andreev, A. Misiuk et al. Appl. Phys. Lett. Vol. 71 (1997), p.264.

Google Scholar

[19] V. V. Emtsev Jr, C. A. J. Ammerlaan, V. V. Emtsev et al: Phys. Stat. Sol. (b) Vol. 235 (2003), p.75.

Google Scholar

[20] V. Antonova, A. Misiuk, V. P. Popov et al: Physica B Vol. 225 (1996), p.251.

Google Scholar

[21] D. I. Brinkevich, V. P. Markevich, L. I. Murin, and V. V. Petrov: Sov. Phys. Semicond. Vol. 26 (1992), p.383.

Google Scholar

[22] V. M. Babich, N. P. Baran, K. I. Zotov, V. L. Kiritsa, V. B. Kovalchuk: Physics and Technics Semiconductors Vol. 29 (1995), p.58.

Google Scholar