Selective SiGe Etching Formed by Localized Ge Implantation on SOI

Article Preview

Abstract:

The fully depleted SOI devices present lateral isolation issues due to the shallow trench isolation (STI) process. We propose in this paper to study a new fabrication process for integrating local isolation trenches. Germanium (Ge) implantation is used to create SiGe (Silicon-Germanium) layer on thin SOI (silicon on insulator) that can be selectively etched. The advantage is the capability of implantation to localize the SiGe area on this substrate and to avoid STI process issues. Aggressive dimensions and geometries are studied and resulting material transformation (crystallization and Ge diffusion) are apprehending via SEM (Secondary Electron Microscopy) or AFM (Atomic Force Spectroscopy) to understand the etching kinetics. After optimization, we demonstrate the capability of fabricating localized trenches on SOI without degrading the neighboring Si layer or consuming the thin BOX (buried oxide).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 108-109)

Pages:

439-444

Citation:

Online since:

December 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. S. Oehrlein, Y. Zhang, G. M. W. Kroesen, E. de Frésart and T. D. Bestwick, Interactive effects in the reactive ion etching of SiGe alloys, Appl. Phys. Lett., Vol. 58, No. 20, pp.2252-2254, May (1991).

DOI: 10.1063/1.104942

Google Scholar

[2] S.W. Bedell, H. Chen, D. K. Sadana, K. Fogel and A. Domenicucci, A survey of defects in strained Si layers, Mat. Res. Soc. Symp. Proc. Vol. 809, 2004, B1. 5. 1-B1. 5. 6.

DOI: 10.1557/proc-809-b1.5

Google Scholar

[3] F. Secco d'Aragona, Dislocation Etch for (100) Planes in Silicon, J. Electrochem. Soc. Solid-State Science and Technology p.945, July (1972).

DOI: 10.1149/1.2404374

Google Scholar

[4] S. Borel, C. Arvet, J. Bilde, D. Louis, Highly selective Isotropic Etching processes, International Microprocesses and Nanotechnology Conference, 2003, pp.334-335.

DOI: 10.1109/imnc.2003.1268782

Google Scholar

[5] J. F. Ziegler, Computer Code SRIM, IBM-Research, New-York, (2000).

Google Scholar

[7] M. Ogino, Y. Oana and M. Watanabe, Phys. Status Solidi A., 72, 535, (1982).

Google Scholar

[8] G. Hettich, H. Mehrer, K. Maier, Institute of physics conference series No. 46, p.600.

Google Scholar

[9] P. Dorner, W. Gust, B. Predel, U. Roll, A. Ludding, H. Odelius, Philos. Mag. A49(4), 557, (1984).

Google Scholar