Formation of Vacancies and Divacancies in Plane-Stressed Silicon

Abstract:

Article Preview

The effect of compressive and tensile plane-stress loading on formation energies and electronic properties of vacancies and divacancies in silicon are studied by first-principles approach for in-plane strains up to 0.7%. It is demonstrated that contributions to defect formation energies from the elastic lattice relaxation and from the band structure modification respond to stress in a different manner, leading to noticeable different behaviour of formation energies for different charges states. The most stable vacancy charge states at different Fermi level are shown to be sensitive to strain magnitude and sign. This results in the strain-induced shifts and even disappearance of some of thermal ionization levels of vacancies and divacancies in the band gap.

Info:

Periodical:

Solid State Phenomena (Volumes 108-109)

Edited by:

B. Pichaud, A. Claverie, D. Alquier, H. Richter and M. Kittler

Pages:

433-438

DOI:

10.4028/www.scientific.net/SSP.108-109.433

Citation:

S. Nicolaysen et al., "Formation of Vacancies and Divacancies in Plane-Stressed Silicon", Solid State Phenomena, Vols. 108-109, pp. 433-438, 2005

Online since:

December 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.