Impact of the Growth Parameters on the Structural Properties of Si0.8Ge0.2 Virtual Substrates

Article Preview

Abstract:

We have focused in this paper on the impact of the growth rate and of the grading rate on the structural properties of Si0.8Ge0.2 virtual substrates grown at 900°C in a commercial reduced pressure chemical vapour deposition reactor. Adopting a grading rate of 4% Ge / $m together with a growth rate around 140 nm min.-1 yields very high quality Si0.8Ge0.2 virtual substrates. Their macroscopic degree of strain relaxation is indeed very close to 100%, their surface root mean square roughness is around 2.3 nm and most importantly their field threading dislocation density is of the order of 6x104 cm-2 only, with almost no pile-ups.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 108-109)

Pages:

445-450

Citation:

Online since:

December 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Schäffler, Semicond. Sci. Technol. 12 (1997), p.1515.

Google Scholar

[2] M.T. Currie, C.W. Leitz, T.A. Langdo, G. Taraschi, E.A. Fitzgerald and D.A. Antoniadis, J. Vac. Sci. Technol. B19 (2001), p.2268.

Google Scholar

[3] C.W. Leitz, M.T. Currie, M.L. Lee, Z. -Y. Cheng, D.A. Antoniadis and E.A. Fitzgerald, J. Appl. Phys. 92 (2002), p.3745.

Google Scholar

[4] Y Bogumilowicz, J M Hartmann, F. Laugier, G. Rolland, T. Billon, N. Cherkashin and A. Claverie, accepted for publication in J. Cryst. Growth (June 2005).

DOI: 10.1016/j.jcrysgro.2005.06.036

Google Scholar

[5] B. Ghyselen et al., Solid State Electron. 48 (2004), p.1285.

Google Scholar

[6] I. Åberg, O.O. Olubiyide, C. Ní Chléirigh, I. Lauer, D.A. Antoniadis, J. Li, R. Hull and J.L. Hoyt, Proceedings of the 2004 VLSI Conference, Honolulu (USA), p.52.

Google Scholar

[7] K. Rim, K. Chan, L. Shi, J. Ott, N. Klymko, F. Cardone, L. Tai, S. Koester, M. Cobb, D. Canaperi, B. To, E. Duch, I. Babich, R. Carruthers, P. Saunders, G. Walker, Y. Zhang, M. Steen and M. Ieong, Proceedings of the 2003 IEDM Conference, Washington (USA), p.49.

DOI: 10.1109/iedm.2003.1269163

Google Scholar

[8] Y. Bogumilowicz, J.M. Hartmann, G. Rolland and T. Billon, J. Cryst. Growth 274 (2005), p.28.

Google Scholar

[9] E.A. Fitzgerald, Y. -H. Xie, D. Monroe, P.J. Silvennan, J. -M. Kuo, A.R. Kortan, F.A. Thiel, B.E. Weir and L.C. Feldman, J. Vac. Sci. Technol. B 10 (1992), p.1807.

Google Scholar

[10] Y. Bogumilowicz, J.M. Hartmann, R. Truche, Y. Campidelli, G. Rolland and T. Semicond. Sci. Technol. 20 (2005), p.127.

Google Scholar

[11] H. Chen, Y.K. Li, C.S. Peng, H.F. Liu, Y.L. Lui, Q. Huang, J.M. Zhou and Q.K. Xue, Phys. Rev. B 65 (2002), p.233303.

Google Scholar

[12] K. Sawano, S. Koh, Y. Shiraki, N. Usami and K. Nakawaga, Appl. Phys. Lett. 83 (2003), p.4339.

Google Scholar

[13] J. Tersoff, Appl. Phys. Lett. 62 (1993), p.693.

Google Scholar

[14] C.W. Leitz, M.T. Currie, A.Y. Kim, J. Lai, E. Robbins and E.A. Fitzgerald, J. Appl. Phys. 90 (2001), p.2730.

Google Scholar

[15] S.B. Samavedam and E.A. Fitzgerald, J. Appl. Phys. 81 (1997), p.3108.

Google Scholar

[16] E.A. Fitzgerald, M.T. Currie, S.B. Samavedam, T.A. Langdo, G. Taraschi, V. Yang, C.W. Leitz and M.T. Bulsara, Phys. Stat. Sol. (a) 171 (1999), p.227.

DOI: 10.1002/(sici)1521-396x(199901)171:1<227::aid-pssa227>3.0.co;2-y

Google Scholar

[17] R. Westhoff, J. Carlin, M. Erdtmann, T.A. Langdo, C. Leitz, V. Yang, K. Petrocelli, M.T. Bulsara, E.A. Fitzgerald and C.J. Vineis, Electrochem. Soc. Proceed. Vol. 2004-07, p.589 (2004).

Google Scholar