Electrical and Optical Characterization of Thin Semiconductor Layers for Advanced ULSI Devices

Article Preview

Abstract:

An overview is given of analytical techniques for the characterization of the electrical and transport parameters in thin (<1 µm) semiconductor layers. Some of these methods have been applied to the lifetime and diffusion length study in thin strain-relaxed buffer (SRB) layers of strained silicon (SSi) substrates, while a second group was dedicated to Silicon-on-Insulator (SOI) materials and devices. The employed techniques can be divided into two groups, whether a device structure (junction, MOS capacitor, MOSFET) is required or not. However, the MicroWave Absorption (MWA) technique can be used in both cases, making it a versatile tool to study both grown-in and processing-induced electrically active defects. The transport properties of SSi wafers are strongly determined by the density of threading and misfit dislocations, although the dependence of the recombination lifetime is weaker than expected from simple Shockley-Read-Hall (SRH) theory. This is related to the high injection regime typically employed, enabling the characterization of the 250-350 nm thick Si1-xGex layer only. At longer carrier decay times, multiple trapping events dominate that can be described by a stretched exponent approach, typical of disordered materials. For SOI substrates, transistor-based techniques will be demonstrated that enable to assess the generation or recombination lifetime in the thin silicon film (<100 nm). The lifetime can be severely degraded by irradiation or hot-carrier degradation. Finally, it will be shown that Generation-Recombination (GR) noise spectroscopy as a function of temperature allows identifying residual ion-implantation-damage related deep levels, which are otherwise hard to detect even by Deep Level Transient Spectroscopy (DLTS).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 108-109)

Pages:

539-546

Citation:

Online since:

December 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Gaubas, R. Tomašiūnas, G. Eneman, R. Delhougne and E. Simoen: submitted for publication in Appl. Phys. Lett. and Semicond. Sci. Technol.; see also these Proceedings Paper 129.

DOI: 10.1088/0268-1242/20/10/012

Google Scholar

[2] G.K. Celler and S. Cristoloveanu: J. Appl. Phys. Vol. 93 (2003), p.4955.

Google Scholar

[3] J.M. Rafí, A. Mercha, E. Simoen and C. Claeys: Solid-State Electron. Vol. 48 (2004), p.1211.

Google Scholar

[4] E. Simoen, A. Mercha and C. Claeys, N. Lukyanchikova and N. Garbar: IEEE Trans. Electron Devices Vol. 51 (2004), p.1008.

DOI: 10.1109/ted.2004.828159

Google Scholar

[5] M.L. Lee, E.A. Fitzgerald, M.T. Bulsara, M.T. Currie and A. Lochtefeld: J. Appl. Phys. Vol. 97 (2005), p.011101.

Google Scholar

[6] R. Delhougne, G. Eneman, M. Caymax, R. Loo, P. Meunier-Beillard, P. Verheyen, W. Vandervorst and K. De Meyer: Solid State Electron. Vol. 48 (2004), p.1307.

DOI: 10.1016/j.sse.2004.02.012

Google Scholar

[7] G. Eneman, E. Simoen, R. Delhougne, E. Gaubas, V. Simons, P. Roussel, P. Verheyen, A. Lauwers, W. Vandervorst, K. De Meyer and C. Claeys: Paper to be published in the Proc. of the 2004 CADRES Workshop, J. Phys. C. Fig. 8. Switching off Id transients before and after a 1011 cm -2 60 MeV proton irradiation and this for a Vgon below and above the Vg threshold for EVB tunneling. Also shown is that a back-gate bias of 14 V has the same impact on the transients like the irradiation (after Rafí et al. 39]). Fig. 9. Drain current transient time to reach 90% of steady state Id level (Id(t=∞) for a PD SOI n-MOSFET before (virgin) after different front gate direct tunnel stress phases. The gate of the transistor was switched from Vgon= 0. 7 V to Voff= 0. 1 V (after Rafí et al.

Google Scholar

[8] E. Gaubas, J. Vaitkus, E. Simoen, C. Claeys and J. Vanhellemont: Mater. Sci. in Semicond. Processing Vol. 4, (2001) p.125.

Google Scholar

[9] E. Gaubas: Lith. J. Phys. Vol. 43 (2003), p.145.

Google Scholar

[10] H.F. Mataré, Defect Electronics in Semiconductors (Wiley-Interscience, New York, 1971).

Google Scholar

[11] G. Eneman, E. Simoen, R. Delhougne, P. Verheyen, R. Loo, M. Caymax, W. Vandervorst, K. De Meyer, Paper to be published in the Proc. of the Symposium on Semiconductor Defect Engineering - Materials, Synthetic Structures, and Devices, MRS Spring Meeting (2005).

DOI: 10.1557/proc-864-e3.7

Google Scholar

[12] H.J. Hovel: Proc. of the Int. Symposium on Silicon-on-Insulator Technology and Devices XI, Ed. by S. Cristoloveanu, The Electrochem. Soc. Proc. Vol. 2003-05 (2003), p.487.

Google Scholar

[13] F.E. Doany, D. Grischkowsky and C. -C. Chi: Appl. Phys. Lett. Vol. 50 (1987), p.460.

Google Scholar

[14] G. Sarrabayrouse, P. Lecerf and D. Bielle-Daspet: Jpn. J. Appl. Phys. Vol. 38 (1999), p.6181.

DOI: 10.1143/jjap.38.6181

Google Scholar

[15] M. Hirano, M. Ichimura and E. Arai: Jpn. J. Appl. Phys. Vol. 39 (2000), p.6513.

Google Scholar

[16] T. Kuwayama, M. Ichimura and E. Arai: Appl. Phys. Lett. Vol. 83 (2003), p.928.

Google Scholar

[17] L. Jastrzebski, G. Cullen and R. Soydan: J. Electrochem. Soc. Vol. 137 (1990), p.303.

Google Scholar

[18] T. Okumura, K. Eguchi, A. En and M. Suhara: Jpn. J. Appl. Phys. Vol. 40 (2001), p.5217.

Google Scholar

[19] L. Lukasiak, E. Kamieniecki, A. Jakubowski and J. Ruzyllo: Proc. of the Int. Symposium on Silicon-onInsulator Technology and Devices XI, Ed. by S. Cristoloveanu, The Electrochem. Soc. Proc. Vol. 2003- 05 (2003), p.425.

Google Scholar

[20] S. Ibuka and M. Tajima: J. Appl. Phys. Vol. 91 (2002), p.5035.

Google Scholar

[21] M. Tajima, H. Yoshida, S. Ibuka and S. Kishino: Jpn. J. Appl. Phys. Vol. 42 (2003), p. L429.

Google Scholar

[22] A. Buczkowski, B. Orschel, S. Kim, S. Rouminev, B. Snegirev, M. Fletcher and F. Kirscht: J. Electrochem. Soc. Vol. 150 (2003), p. G436.

DOI: 10.1149/1.1585056

Google Scholar

[23] W.A. Nevin, D.L. Gay and V. Higgs: J. Electrochem. Soc. Vol. 150 (2003), p. G591.

Google Scholar

[24] S.G. Kang and D.K. Schroder: IEEE Trans. Electron Devices Vol. 49 (2002), p.1742.

Google Scholar

[25] B. Jun, D.M. Fleetwood, R.D. Schrimpf, X. Zhou, E.J. Montes and S. Cristoloveanu: IEEE Trans. Nucl. Sci. Vol. 50 (2003), p.1891.

DOI: 10.1109/tns.2003.821380

Google Scholar

[26] J.Y. Choi, S. Ahmed, T. Dimitrova, J.T.C. Chen and D.K. Schroder: IEEE Trans. Electron Devices Vol. 51 (2004), p.1380.

Google Scholar

[27] L.J. McDaid, S. Hall, W. Eccleston and J.C. Alderman: Semicond. Sci. Technol. Vol. 7 (1992), p.940.

Google Scholar

[28] P. Dimitrakis, G.J. Papaioannou and S. Cristoloveanu: J. Appl. Phys. Vol. 80 (1996), p.1605.

Google Scholar

[29] I.V. Antonova, J. Stano, O.V. Naumova, V.A. Skuratov and V.P. Popov: IEEE Trans. Nucl. Sci. Vol. 51 (2004), p.1257.

DOI: 10.1109/tns.2004.829367

Google Scholar

[30] Y. Miura, K. Hamada, T. Kitano and A. Ogura: Jpn. J. Appl. Phys. Vol. 37 (1998), p.1274.

Google Scholar

[31] D.P. Vu and J.C. Pfister: Appl. Phys. Lett. Vol. 47 (1985), p.950.

Google Scholar

[32] D.E. Ioannou, S. Cristoloveanu, M. Mukherjee and B. Mazhari, IEEE Electron Device Lett. Vol. 11 (1990) p.409.

DOI: 10.1109/55.62972

Google Scholar

[33] N. Yasuda, K. Taniguchi, C. Hamaguchi, Y. Yamaguchi and T. Nishimura, IEEE Trans. Electron Devices Vol. 39 (1992), p.1197.

DOI: 10.1109/16.129103

Google Scholar

[34] D. Munteanu, D.A. Weiser, S. Cristoloveanu, O. Faynot, J. -L. Pelloie and J.G. Fossum: IEEE Trans. Electron Devices Vol. 45 (1998), p.1678.

DOI: 10.1109/16.704363

Google Scholar

[35] D. Munteanu and A. -M. Ionescu: IEEE Trans. Electron Devices Vol. 49 (2002), p.1198.

Google Scholar

[36] H. Shin, M. Racanelli, W.M. Huang, J. Foerstner, T. Hwang and D.K. Schroder: Solid-State Electron. Vol. 43 (1999), p.349.

DOI: 10.1016/s0038-1101(98)00241-x

Google Scholar

[37] J.M. Rafí, A. Mercha, E. Simoen, X. Serra-Gallifa, and C. Claeys: Proc. CDE 2003 (2003), p. V-12-1.

Google Scholar

[38] A. Mercha, J.M. Rafí, E. Simoen, E. Augendre and C. Claeys: IEEE Trans. Electron Devices Vol. 50 (2003), p.1675.

DOI: 10.1109/ted.2003.814983

Google Scholar

[39] J.M. Rafí, A. Mercha, E. Simoen, K. Hayama and C. Claeys: Jpn. J. Appl. Phys. Vol. 43 (2004), p.7984.

Google Scholar

[40] J.M. Rafí, E. Simoen, A. Mercha, F. Campabadal and C. Claeys: submitted to Solid-State Electron.

Google Scholar

[41] C. Claeys, A. Mercha and E. Simoen: J. Electrochem. Soc. Vol. 151 (2004), p. G307.

Google Scholar

[42] I. Lartigau, J. -M. Routoure, R. Carin, A. Mercha, E. Simoen, and C. Claeys: Proc. of the 17th Int. Conf. on Noise and Fluctuations - ICNF 2003, Ed. J. Sikula, CNRL s. r. o., Brno (Czech Republic) (2003), p.763.

DOI: 10.1109/icnf.2015.7288588

Google Scholar