Ab Initio Investigations of Threshold Displacement Energies and Stability of Associated Defects in Cubic Silicon Carbide

Article Preview

Abstract:

Using first principles molecular dynamics simulations, we have recently determined the threshold displacement energies and the associated created defects in cubic silicon carbide. Contrary to previous studies using classical molecular dynamics, we found values close to the experimental consensus, and also created defects in good agreement with recent works on interstitials stability in silicon carbide. We have also investigated the stability of several Frenkel pairs, using transition state theory and constrained path calculations.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 108-109)

Pages:

671-676

Citation:

Online since:

December 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Hallèn, M.S. Janson, A.Y. Kuznetsov, D. Aberg, M.K. Linnarsson, B.G. Svensson, P.O. Persson, F.H.C. carlsson, L. Storasta, J.P. Bergman, S.G. Sridhara, Y. Zhang, Nucl. Instr. And Meth. B Vol. 186 (2002), p.186.

DOI: 10.1016/s0168-583x(01)00880-1

Google Scholar

[2] W. Skorupa, V. Heera, Y. pacaud, H. Weishart, Nucl. Instr. And Meth. B Vol. 120 (1996), p.114.

Google Scholar

[3] S. Zinkle and C. Kinoshita, J. Nucl. Mat. Vol. 251(1997), p.200.

Google Scholar

[4] J. Perlado, J. Nucl. Mater. Vol. 251 (1997), p.98.

Google Scholar

[5] W. Windl, T. Lenosky, J. Kress, and A. Voter, Nucl. Instr. and Meth. Phys. B Vol. 141 (1998), p.61.

Google Scholar

[6] R. Devanathan, T. D. de la Rubia, and W. Weber, J. Nucl. Mater. Vol. 253 (1998), p.47.

Google Scholar

[7] R. Devanathan and W. Weber, J. Nucl. Mater. Vol. 278 (2000), p.258.

Google Scholar

[8] J. Perlado, L. Malerba, A. Sànchez-Rubio, and T. D. de la Rubia, J. Nucl. Mater. Vol. 276 (2000), p.235.

Google Scholar

[9] L. Malerba and J. Perlado, Phys. Rev. B Vol. 65 (2002), p.045202.

Google Scholar

[10] G. Lucas and L. Pizzagalli, Nucl. Instrum. and Meth. B Vol. 229 (2005), p.359.

Google Scholar

[11] W.J. Weber, W. Jiang, and S. Thevuthasan, Nucl. Instrum. and Meth. B Vol. 166-167 (2000), p.410.

Google Scholar

[12] W.J. Weber, W. Jiang, and S. Thevuthasan, Nucl. Instrum. and Meth. B Vol. 175-177 (2001), p.26.

Google Scholar

[13] F. Gao, and W.J. Weber, J. Applied Phys. Vol. 94 (2003), p.4348.

Google Scholar

[14] G. Lucas and L. Pizzagalli, submitted to Phys. Rev. Letters.

Google Scholar

[15] F. Gygi, LLNL, 1999-(2005).

Google Scholar

[16] P. Hohenberg and W. Kohn, Phys. Rev. Vol. 136 (1964), p. B864.

Google Scholar

[17] W. Kohn and L.J. Sham, Phys. Rev. Vol. 140 (1965), p. A1133.

Google Scholar

[18] J. Perdew and A. Zunger, Phys. Rev. B Vol. 23 (1981), p.5048.

Google Scholar

[19] O. Madelung, ed., Landolt-Börnstein: Numerical Data and Functional Relationship in Science and Technology Vol. 17C of New Series Group III (Springer, Berlin, 1982); ibid. Vol. 22A.

Google Scholar

[20] M. Bockstedte, A. Mattausch, and O. Pankratov, Phys. Rev. B Vol. 68 (2003), p.205201.

Google Scholar

[21] J. Lento, L. Torpo, T. Staab, and R. Nieminen, J. Phys. Condens. Matter Vol. 16 (2004), p.1219.

Google Scholar

[22] M. Salvador, J. Perlado, A. Mattoni, F. Bernardini, and L. Colombo, J. Nucl. Mat. Vol. 329 (2004), p.1053.

Google Scholar

[23] There are 6 equivalent <100> directions, 12 <110>, 4 <111>, and 4 <-1-1-1>.

Google Scholar

[24] A.F. Voter, F. Montalenti, and T.C. Germann, Annu. Rev. Mater. Res. Vol. 32 (2002), p.321.

Google Scholar

[25] G. Henkelman, and H. Jonsson, J. Chem. Phys. Vol. 11 (1999), p.7010.

Google Scholar