Interfacing Biology with Electronic Devices

Article Preview

Abstract:

Due to a number of advances in molecular biology, cell and tissue culture in combination with more sensitive methods to transduce biological signals, it has become increasingly feasible to detect unknown toxicity or pharmacological effects by using biological systems which are electrically coupled to micro- or nanoelectrodes or field-effect transistors (FETs). The coupling of biomolecules with electronic devices is demonstrated. In order to identify the contributions of the various cell signals we have investigated the coupling of cardiac myocytes with FETs. On the other side such systems can also be used to study the very basics of distributed information processing by interfacing cultured neuronal networks with microelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 108-109)

Pages:

789-796

Citation:

Online since:

December 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Naitoh, K. Tsukagoshi, K. Murata, and W. Mizutani, Surf. Sci. Nanotech., 2003, 1, 41-44.

Google Scholar

[2] D. Strachan, et al.; Appl. Phys. Lett., 2005, 86, 043109.

Google Scholar

[3] A. Sibbald (1983) Proc. Inst. Elec. Eng. I, 130, 233-244.

Google Scholar

[4] P. Bergveld, J. Wiersma and H. Meertens: IEEE Trans Biomed. Eng. 23 (1976) pp.136-144.

Google Scholar

[5] P. Fromherz, A. Offenhäusser, T. Vetter and J. Weis: Science 252 (1991) pp.1290-1293.

Google Scholar

[6] A. Offenhäusser, C. Sprössler, M. Matsuzawa and W. Knoll: Biosens Bioelectron 12 (1997) pp.819-826.

Google Scholar

[7] L. Bousse, J. Shott and J. D. Meindl: IEEE Electron Device Letters 9 (1988) pp.44-46.

Google Scholar

[8] A. Offenhäusser, J. Rühe, and W. Knoll: J. Vac. Sci. Techn., A: 13 (1995) pp.2606-2612.

Google Scholar

[9] A. Cohen, M. E. Spira, S. Yitshaik, G. Borghs, O. Shwartzglass and J. Shappir: Biosensors and Bioelectronics 19 (2004) pp.1703-1709.

DOI: 10.1016/j.bios.2004.01.021

Google Scholar

[10] S. Meyburg, M. Goryll, J. Moers, S. Ingebrandt, S. Böcker-Meffert, H. Lüth and A. Offenhäusser: Biosensors and Bioelectronics in press.

DOI: 10.1016/j.bios.2005.03.010

Google Scholar

[11] W. G. Regehr, J. Pine, C.S. Cohan, M.D. Mischke and D.W. Tank. J. Neurosci. Meth. 30 (1989) pp.91-106.

Google Scholar

[12] R. Weis and P. Fromherz: Phys. Rev. E 55 (1997) pp.877-889.

Google Scholar

[13] S. Vassanelli and P. Fromherz:. Appl. Phys. A 66(1998) pp.459-463.

Google Scholar

[14] J. Rühe, R. Yano, J.S. Lee, P. Köberle, W. Knoll and A. Offenhausser: J. Biomat. Sci. - Polymer Ed. 10 (1999) pp.859-874.

Google Scholar

[15] M. Scholl, C. Sprössler, M. Denyer, M. Krause, K. Nakajima, A. Maelicke, W. Knoll and A. Offenhäusser: J. Neurosci. Meth. 104 (2000) pp.65-75.

DOI: 10.1016/s0165-0270(00)00325-3

Google Scholar

[16] M.C.T. Denyer, M. Riehle, J. Hayashi, M. Scholl, C. Sprössler, S.T. Britland, A. Offenhäusser and W. Knoll:. Bioassay development: In Vitro Cellular & Developmental Biology-Animal 35 (1999) pp.352-356.

DOI: 10.1007/s11626-999-0086-5

Google Scholar

[17] C. Sprössler, M.C.T. Denyer, S. Britland, W. Knoll and A. Offenhäusser: Phys. Rev. E 60 (1999) pp.2171-2176.

DOI: 10.1103/physreve.60.2171

Google Scholar

[18] S. Ingebrandt, C.K. Yeung, M. Krause and A. Offenhäusser: Biosensors & Bioelectronics 16 (2001) 565-570.

DOI: 10.1016/s0956-5663(01)00170-1

Google Scholar