Deep Level Defects in AlxGa1-xN/GaN Heterointerfaces Grown by Molecular Beam Epitaxy

Article Preview

Abstract:

Capacitance-voltage (C-V) and Deep-level transient spectroscopy (DLTS) measurements on AlxGa1-xN/GaN heterostructures were performed to investigate the existence of the carriers and the behavior of the deep levels in the AlxGa1-xN/GaN heterointerface. The C-V depth profile showed that the carrier concentration existed at the AlxGa1-xN/GaN heterointerface was 4 × 1012 cm2. The DLTS results showed two deep levels. The capture cross-section of the deep level related to the two-dimensional electron gas decreased with increasing depth, resulting from the existence of the different deep levels in each region.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 124-126)

Pages:

89-92

Citation:

Online since:

June 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. A. Ponce and D. P. Bour, Nature 386, 351 (1997).

Google Scholar

[2] S. Nakamura, Science 281, 956 (1998).

Google Scholar

[3] G. Koley and M. G. Spencer, Appl. Phys. Lett. 86, 042107 (2005).

Google Scholar

[4] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, IEEE Electron Device Lett. 20, 161 (1999).

DOI: 10.1109/55.753753

Google Scholar

[5] W. Gotz, N. M. Johnson, H. Amano, and I. Akasaki, Appl. Phys. Lett. 66, 1340 (1995).

Google Scholar

[6] L. Balagurov and P. J. Chong, Appl. Phys. Lett. 68, 43 (1996).

Google Scholar

[7] D. Jena, A. C. Gossard, and U. K. Mishra, Appl. Phys. Lett. 76, 1707 (2000).

Google Scholar

[8] M. A. Khan, M. S. Shur, W. Chen, and J. N. Kuznia, Electron Lett. 30, 2175 (1994).

Google Scholar

[9] P. B. Kleen, S. C. Binari, J. A. Freitas, Jr, and A. E. Wickenden, Appl. Phys. Lett. 75, 4016 (1999).

Google Scholar

[10] M. Linde, S. J. Uftring, G. D. Watkins, V. Harle, and F. Scholz, Phys. Rev. B 55, 177 (1997).

Google Scholar

[11] D. C. Look, D. C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones, and R. J. Molnar, Phys. Rev. Lett. 79, 2273 (1997).

DOI: 10.1103/physrevlett.79.2273

Google Scholar

[12] M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schinoes, and G. J. Zydzik, J. Appl. Phys. 77, 686 (1995).

DOI: 10.1063/1.359055

Google Scholar

[13] F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baaca, S. J. Pearton, and C. R. Abernathy, Appl. Phys. Lett. 73, 3893 (1998).

Google Scholar

[14] Omling and E. R. Weber, Phys. Rev. B 32, 6571 (1985).

Google Scholar

[15] P. N. Grillot and S. A. Ringel, J. Appl. Phys. 77, 3248 (1995).

Google Scholar