Comparison of Defects Created by Plasma-Based Ion Implantation and Conventional Implantation of Hydrogen in Germanium

Article Preview

Abstract:

(001) n-type Ge has been implanted at given fluence and intermediate temperature with hydrogen ions using two processes: conventional in-line implantation and plasma based ion implantation. The as-created microstructure has been compared using transmission electron microscopy. In particular, it has been shown that the major differences observed are due to the implantation temperature, much higher during the PBII process. This suggests that plasma based ion implantation could be used for layer transfer in spite of a higher surface roughness observed after the PBII process.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Pages:

101-106

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.Y. Yu, C. Y. Lee, C. H. Lin, C.W. Liu, Appl. Phys. Let. Vol. 89 (2006), p.101913.

Google Scholar

[2] Y. L. Chao, R. Scholz, M. Reiche, U. Gösele, J. C. S. Woo, Jap. J. Appl. Phys. Vol. 45 (2006), p.8565.

Google Scholar

[3] X. Lu, S. Sundar Kumar Iyer, C. Hu, and N. W. Cheung, Appl. Phys. Let. Vol. 71 (1997), p.2767.

Google Scholar

[4] T. Akatsu, K.K. Bourdelle, C. Richtarch, B. Faure, F. Letertre, Appl. Phys. Let. Vol. 86, (2005), p.181910.

DOI: 10.1063/1.1906319

Google Scholar

[5] S. W. Bedell and W. A. Lanford, J. Appl. Phys. Vol. 90 (2001), p.1138.

Google Scholar

[6] Q. Y. Tong, K. Gutjahr, S. Hopfe, U. Gösele, T. H. Lee, Appl. Phys. Let. Vol. 70 (1997), p.1390.

Google Scholar

[7] M. Hiller, E.V. Lavrov and J. Weber, Phys. Rev. B Vol. 71 (2005), p.045208.

Google Scholar

[8] S. Muto, S. Takeda, M. Hirata, Mat. Sc. Forum Vol. 143 (1994), p.897.

Google Scholar

[9] B. Hourahine, R. Jones, P.R. Briddon, Physica B Vol. 376-377 (2006), p.105.

Google Scholar

[10] J.F. Ziegler, J.B. Biersack, http: /www. srim. org.

Google Scholar

[11] M.L. David, F. Pailloux, D. Babonneau, M. Drouet, J.F. Barbot, E. Simoen, C. Claeys, to be published.

Google Scholar

[12] J. Grisolia, F. Cristiano, G. Ben Assayag, A. Claverie, Nucl. Inst. Meth. Phys. Res. B Vol. 178 (2001), p.160.

Google Scholar

[13] J. Lauwaert, M.L. David, M.F. Beaufort, E. Simoen, D. Depla, P. Clauws, Mat. Sc. In Semiconductor Proc. Vol. 9 (2006), p.571.

DOI: 10.1016/j.mssp.2006.08.049

Google Scholar

[14] Z. Arab, M.L. David, M. Drouet, L. Pichon, A. Straboni, to be published in Plasma Process. Polym. Vol. 4 (2007).

Google Scholar

[15] E. Oliviero, M.F. Beaufort, J.F. Barbot, J. Appl. Phys. Vol. 89 (2001), p.5332.

Google Scholar

[16] P.F.P. Fichtner, J.R. Kaschny, M. Behar, R.A. Yankov, A. Mücklich, W. Skorupa, Nucl. Inst. Meth. Phys. Res. B Vol. 148 (1999), p.329.

Google Scholar

[17] V. Raineri, S. Coffa, E. Szilagyi, J. Gyulai, E. Rimini, Phys. Rev. B Vol. 61 (2000), p.937.

Google Scholar

[18] J. Weber, M. Hiller, E.V. Lavrov, Mat. Sc. In Semicon. Proc. Vol. 9 (2006), p.564.

Google Scholar