Trans-RP Gettering and Out-Diffusion of Oxygen Implanted into Highly B-Doped Silicon

Article Preview

Abstract:

Implantation of 18O into highly B-doped and undoped silicon provides the possibility to investigate the effect of B-doping and to distinguish the processes of in-diffusion and out-diffusion of oxygen by profiling of 16O and 18O, respectively. The simultaneous in- and outdiffusion of oxygen was observed at 1000°C under oxidizing conditions. For silicon, heavily Bdoped to concentrations of 􀀀 1019 B cm-3, oxygen tends to diffuse out toward the surface. Moreover, a fraction of the oxygen from both sources, implanted 18O and in-diffused 16O, also migrates deep into the substrate and is trapped far beyond the mean ion range RP in the depth of x  3RP at the so-called trans-RP gettering peak. In undoped silicon oxygen accumulation only takes place at vacancy-type defects introduced by ion implantation at a position shallower than RP. The mobility of oxygen implanted into B-doped Si is higher than for implantation into undoped Si. Highly mobile defects are suggested to be formed in B-doped silicon beside the common mobile interstitial oxygen, Oi, and the immobile SiOX precipitates. These I OXBY defects may involve selfinterstitials, I, and O and B atoms. The trans-RP peak appears due to the decay of these defects and the segregation of their constituents.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 156-158)

Pages:

375-380

Citation:

Online since:

October 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.C. Mikkelsen, Appl. Phys. Lett. 40 (1983) 336.

Google Scholar

[2] D. Heck, R.E. Tressler and J. Monkowski, J. Appl. Phys. 54 (1983) 5739.

Google Scholar

[3] T.Y. Tan and U. Gösele, Appl. Phys. Lett. 40 (1982) 616.

Google Scholar

[4] O.W. Holland, L. Xie, B. Nielsen and D.S. Zhou, J. Electr. Mat. 25 (1996) 99.

Google Scholar

[5] V. Privitera, S. Coffa, F. Priolo, K. Kyllesbech-Larson and G. Mannino, Appl. Phys. Lett. 68 (1996) 3466.

Google Scholar

[6] X. Ou, R. Kögler, A. Mücklich, W. Skorupa, W. Möller, X. Wang, J.W. Gerlach and B. Rauschenbach, Appl. Phys. Lett. 93 (2008) 161907.

DOI: 10.1063/1.3005595

Google Scholar

[7] R. Kögler, A. Mücklich, W. Anwand, F. Eichhorn and W. Skorupa, Solid State Phenomena 131-133 (2008) 339.

DOI: 10.4028/www.scientific.net/ssp.131-133.339

Google Scholar

[8] G. Kissinger, J. Dabrowski, A. Sattler, T. Müller and W. von Ammon, Solid State Phenomena 131-133 (2008) 293.

DOI: 10.4028/www.scientific.net/ssp.131-133.293

Google Scholar

[9] J.D. Murphy, P.R. Wilshaw, B.C. Pygall, S. Senkader and R.J. Falster, J. Appl. Phys. 100 (2006) 103531.

DOI: 10.1063/1.2369536

Google Scholar

[10] D. Aberg, B.G. Svensson, T. Hallbergand J.L. Lindström, Phys. Rev. B 58 (1998) 12944.

Google Scholar

[11] K. Sueoka M. Akatsuka, M. Yonemura, T. Ono, E. Asayama, H. Katahama, J. Electrochem. Soc. 147 (2000) 756.

DOI: 10.1149/1.1393266

Google Scholar

[12] V. I. Obodnikov, E.G. Tishkovsky, A.G. Cherkov, L.I. Fedina, Nucl. Instum. and Meth. B 251 (2006) 445.

Google Scholar

[13] Y. M. Gueorguiev, R. Kögler, A. Peeva, D. Panknin, A. Mücklich, R.A. Yankov and W. Skorupa, J. Appl. Phys. 88 (2000) 5645.

DOI: 10.1063/1.1316054

Google Scholar

[14] R. Kögler, A. Peeva, A. Lebedev, M. Posselt, W. Skorupa, G. Ötzelt, H. Hutter and M. Behar, J. Appl. Phys. 94 (2003) 3834.

Google Scholar

[15] K. Franzweb, J. Lörincik, P. Williams, Surface Sci., 573 (2004) 291.

Google Scholar

[16] A. Ogura, J. Electrochem. Soc., 145 (1998) 1735.

Google Scholar

[17] S. Bagchi, S.J. Krause, P. Roitman, Appl. Phys. Lett., 71 (1997) 2136.

Google Scholar

[18] H. Ono and A. Ogura, J. Appl. Phys., 87 (2000) 7782.

Google Scholar

[19] R. Kögler, X. Ou, W. Skorupa, W. Möller, J. Appl. Phys., 104 (2008) 103502.

Google Scholar

[20] S. Nakashima, K. Izumi, J. Mater. Res., 8 (1993) 523.

Google Scholar

[21] J. Xia, T. Saito, R. Kim, T. Aoki, Y. Kamakura and K. Taniguchi, J. Appl. Phys. 85 (1999) 7597.

Google Scholar

[22] A. Peeva, personal communication: Metallic impurities (Cu) are frequently accumulated at the depth position of the end point of extended, deeply penetrating (111) dislocations.

Google Scholar