Hydrogen-Induced Passivation of Grain-Boundary Defects in Polycrystalline Silicon

Article Preview

Abstract:

The influence of the hydrogen content in the amorphous starting material on hydrogen bonding and defect passivation in laser annealed polycrystalline silicon is investigated. The samples are characterized using electron paramagnetic resonance and hydrogen effusion measurements. After laser dehydrogenation and crystallization the samples contain a residual H concentration of up to 8×1021 cm-3. During a vacuum anneal at least 1.5×1021 cm-3 are mobile of which only 3.7×1018 cm-3 H atoms passivate preexisting Si dangling bonds. It is shown that a vacuum anneal can cause the vast majority of H atoms to accumulate in platelet-like structures. Defect passivation and platelet nucleation and growth occur spatially separated requiring long range H diffusion.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 156-158)

Pages:

351-356

Citation:

Online since:

October 2009

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Christiansen, P. Lengsfeld, J. Krinke, M. Nerding, N. H. Nickel, and H. P. Strunk, J. Appl. Phys. 89, 5348 (2001).

Google Scholar

[2] N. M. Johnson, D. K. Biegelsen, and M. D. Moyer, Appl. Phys. Lett. 40, 882 (1982).

Google Scholar

[3] N. H. Nickel, N. M. Johnson, and W. B. Jackson, Appl. Phys. Lett 62 (25), 3285 (1993).

Google Scholar

[4] N. H. Nickel, N. M. Johnson, and J. Walker, Phys. Rev. Lett. 75 (20), 3720 (1995).

Google Scholar

[5] N. H. Nickel, G. B. Anderson, and J. Walker, Solid State Comm. 99, 427 (1996).

Google Scholar

[6] N. M. Johnson, J. Walker, and K. S. Stevens, J. Appl. Phys. 69, 2631 (1991).

Google Scholar

[7] P. Mei, J. B. Boyce, M. Hack, R. A. Lujan, R. I. Johnson, G. B. Anderson, D. K. Fork, and S. E. Ready, Appl. Phys. Lett. 64 (9), 1132 (1994).

DOI: 10.1063/1.110829

Google Scholar

[8] P. Lengsfeld and N. H. Nickel, in Laser crystallization of silicon, edited by N. H. Nickel (Elsevier Academic Press, Paris, 2003), Vol. 75, p.119.

Google Scholar

[9] W. B. Jackson, A. J. Franz, H. -C. Jin, J. R. Abelson, and J. L. Gland, J. Non-Cryst. Sol. 227230, 143 (1998).

Google Scholar

[10] N. H. Nickel and K. Brendel, Appl. Phys. Lett. 82, 3029 (2003).

Google Scholar

[11] C. G. Van de Walle, Phys. Rev. B 49 (7), 4579 (1994).

Google Scholar

[12] W. B. Jackson, Curr. Opin. Solid State Mater. Sci. 1, 562 (1996).

Google Scholar

[13] N. H. Nickel and I. E. Beckers, Phys. Rev. B 66, 075211 (2002); N. H. Nickel, W. B. Jackson, and J. Walker, Phys. Rev. B 53 (12), 7750 (1996).

Google Scholar

[14] N. M. Johnson, F. A. Ponce, R. A. Street, and R. J. Nemanich, Phys. Rev. B 35, 4166 (1987).

Google Scholar

[15] K. Brendel, N. H. Nickel, K. Lips, and W. Fuhs, J. Non-Cryst. Sol. 338-340, 262 (2004).

Google Scholar

[16] N. H. Nickel, G. B. Anderson, N. M. Johnson, and J. Walker, Phys. Rev. B 62 (2000).

Google Scholar

[17] W. B. Jackson and S. B. Zhang, in Transport, Correlation and Structural Defects, edited by Hellmut Fritzsche (World Scientific, Singapore, 1990), Vol. C, p.63.

Google Scholar

[18] W. B. Jackson and S. B. Zhang, Physica B 170, 197 (1991).

Google Scholar