Influence of Hydrogen on the Structural Stability of Annealed Ultrathin Si/Ge Amorphous Layers

Article Preview

Abstract:

The influence of hydrogen on the structural stability of multilayers made of ultrathin (3 nm) Si and Ge amorphous layers submitted to annealing to activate Si and Ge intermixing has been studied by TEM and AFM. By energy dispersive microanalysis the interdiffusion of Si and Ge has been observed. The Si/Ge multilayers, however, underwent remarkable structural degradation because of the formation of hydrogen bubbles which give rise to surface bumps and eventually craters when the bubbles blow up because of too high internal pressure in samples with high H content and annealed at high temperatures. The hydrogen forming the bubbles comes from the rupture of the Si-H and Ge-H bonds activated by the thermal energy of the annealing and by the energy released by the recombination of thermally generated electron hole pairs.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 156-158)

Pages:

325-330

Citation:

Online since:

October 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Paul, D. K. Paul, B. von Roedern, J. Blake, S. Oguz: Phys. Rev. Lett. 46 (1981), p.1016.

Google Scholar

[2] S. Jin and L. Ley: Phys. Rev. B 44 (1991), p.1066.

Google Scholar

[3] W. Beyer and U. Zastrow: J. Non-Cryst. Solids 266-269 (2000), p.206.

Google Scholar

[4] G. A. N. Connell and J. R. Pawlik: Phys. Rev. B13 (1976), p.787.

Google Scholar

[5] J. D. Cohen: Solar Energy Mater. Solar Cells 78 (2003), p.399.

Google Scholar

[6] K. W. Jobson, J. -P. R. Wells, R. E. I. Schropp. D. A. Carder, P. J. Philips and J. I. Dijkhuis: Phys. Rev. B73 (2006), p.155202.

Google Scholar

[7] Y. Bouziem, A. Belfedal, J. D. Sib, A. Kebab and L. Chahed: J. Phys.: Condens. Matter 19 (2007), p.356215.

Google Scholar

[8] A. Arrais, P. Benzi, E. Bettizzo and C. Damaria: J. Appl. Phys. 102 (2007), p.104905.

Google Scholar

[9] T. Sameshima, H. Watanabe, H. Kanno, T. Sadoh and M. Miyao: Thin Solid Films 487 (2005), p.67.

DOI: 10.1016/j.tsf.2005.01.037

Google Scholar

[10] W. Beyer: Solar Energy Mater. Solar Cells 78 (2003), p.235.

Google Scholar

[11] P. Agarwal and S. C. Agarwal: Phil. Mag. B80 (2000), p.1327.

Google Scholar

[12] J. Baugh and D. Han: Phys. Rev. B66 (2002), p.115203.

Google Scholar

[13] D. Han, J. Baugh, G. Yue and Q. Wang: Phys. Rev. B62 (2000), p.7169.

Google Scholar

[14] P. Agarwal, A. Srivastava, D. Deva: J. Appl. Phys. 101 (2007), p.083504.

Google Scholar

[15] M. Malyovanik, S. Ivan, A. Csik, G. A. Langer, D. L. Beke and S. Kökényesi: J. Appl. Phys. 93 (2003), p.139.

DOI: 10.1063/1.1526157

Google Scholar

[16] S. Hazra, A. R. Middya, S. Ray, C. Malten and F. Finger: J. Phys. D: Appl. Phys. 34 (2001), p.2475.

Google Scholar

[17] P. D. Nellist and S. J. Pennycook: Ultramicroscopy 78 (1999), p.111.

Google Scholar

[18] A. Csik, G. A. Langer, D. L. Beke, Z. Erdélyi, M. Menyhard, A. Sulyok: J. Appl. Phys. 89 (2001), p.804.

DOI: 10.1063/1.1331330

Google Scholar

[19] A. Simon, A. Csik, F. Paszti, A. Z. Kiss, D. L. Beke, L. Daroczi, Z. Erdélyi, G. A. Langer: Nucl. Instr. and Meth. Phys. Res. B161 (2000), p.471.

Google Scholar