Boron and Phosphorus Implantation Induced Electrically Active Defects in p-Type Silicon

Article Preview

Abstract:

Electrically active defects induced by ion implantation of boron and phosphorus into silicon and their recovery under isothermal annealing at 450 °C were investigated using Deep Level Transient Spectroscopy (DLTS) and Energy Resolved Tunneling Photoconductivity (ERTP) spectroscopy at cryogenic temperatures. DLTS results show electrically active deep traps located at Ev+0.35 eV and Ev+0.53 eV in boron implanted Si and at Ev+0.34 eV, Ev+0.43 eV, and Ev+0.38 eV in phosphorus implanted Si. These meta-stable defect sites were found to be either eliminated or significantly reduced in thermally annealed samples. We assigned these defect sites to hydrogen and carbon incorporated complexes formed during ion implantation. Corroborating the DLTS results, the photocurrent measurement also revealed a strong reduction of electrically active defects states, extended from EC – 0.3 eV up to the conduction band edge of Si, upon isothermal annealing.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 156-158)

Pages:

313-317

Citation:

Online since:

October 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. I. Pankove, D.E. Carlson, J. E. Berkeyheiser, and R. O. Wance: Phys. Rev. Lett. Vol. 51 (2008), p.2562.

Google Scholar

[2] S. Fatima, C. Jagadish, J. Lalita, B. G. Svensson, and A. Hallen: J. Appl. Phy. Vol. 85 (1999), p.2562.

Google Scholar

[3] D.V. Lang: J. Appl. Phys. Vol. 45 (1974), p.3014.

Google Scholar

[4] F. D. Auret, P. N. K. Deenaspanray: Critical Rev. Sol. Stat. Mat. Sci. Vol 29 (2004), p.1.

Google Scholar

[5] M. O. Aboelfotoh and B. G. Svensson: Phys. Rev. B Vol. 52 (1995), p.2522.

Google Scholar

[6] B. G. Svensson and J. L. Lindstrom: Phys. Stat. Sol. A Vol. 95, (1986), p.537.

Google Scholar

[7] S. Leibertino, J. L. Benton, D. C. Jacobson, D. J. Eaglesham, J. M. Poate, S. Coffa, P. G. Fuochi, and M. Lavalle: Appl. Phys. Lett. Vol. 70 (1997), p.3002.

DOI: 10.1063/1.118770

Google Scholar

[8] O. Feklisova, N. Yarykin, E. Yakimov, and J. Weber: Physica B Vol. 273-274 (1999), p.235.

DOI: 10.1016/s0921-4526(99)00461-5

Google Scholar

[9] Z. Yu and M. Aceves-Mijares: Thin Film Sol. Vol. 473 (2005), p.145.

Google Scholar

[10] B. -C. Hsu, C. W. Liu, W. T. Liu, and C. -H. Lin: IEEE Trans. Elec. Dev. Vol. 48 (2001), p.1747.

Google Scholar

[11] K. Irmscher, H. Klose, and K. Mass: J. Phys. C Vol. 17 (1984), 6317.

Google Scholar

[12] A. R. Peaker, J. H. Evans-Freeman, P. Y. Y. Kan, L. Rubaldo, I. D. Hawkins, K. D. VernonParry, and L. Dobaczewski: Physica B Vol. 273-274 (1999), p.235.

DOI: 10.1016/s0921-4526(99)00463-9

Google Scholar