Dislocation States and Deformation-Induced Point Defects in Plastically Deformed Germanium

Article Preview

Abstract:

We used the DLTS and photoluminescence (PL) techniques to study the deep states due to dislocations and deformation-induced point defects (PDs) in plastically deformed p-type germanium single crystals containing predominantly 60 dislocations with density ND, ranging from 105 to 106 cm-2. The narrow line near the temperature 140K dominates in the DLTS spectra. The ionization enthalpy and the capture cross section for holes traps indicate that the substitution copper atoms Cus are the main type of PDs. A decrease of the Cus atoms concentration and redistribution of the intensity in the PL spectra after the heat treatment of deformed samples at a temperature 500 °C are attributed to the diffusion of copper atoms to dislocations resulting in the appearance of “dirty” regular segments of 60 dislocations.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 156-158)

Pages:

289-294

Citation:

Online since:

October 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.A. Shevchenko and A.I. Kolubakin. Sov. Phys. Semicond. Vol. 18 (1979), p.1046.

Google Scholar

[2] V.V. Aristov, Yu.A. Ossipyan, R. Scholz, I.I. Snigireva, I.I. Khodos and S.A. Shevchenko. Phys. St. Sol. (a) Vol. 79 (1983), p.47.

Google Scholar

[3] W. Schröter and H. Cerva. Solid State Phenom. Vol. 85-86 (2002), p.67.

Google Scholar

[4] A.I. Kolyubakin and S.A. Shevchenko. Phys. St. Sol. (a) Vol. 63 (1981), p.677.

Google Scholar

[5] A.I. Kolyubakin, Yu.A. Osipyan and S.A. Shevchenko. Sov. Phys. JETP Vol. 93 (1987), p.248.

Google Scholar

[6] A.N. Izotov, A.I. Kolyubakin, S.A. Shevchenko and E.A. Steinman: Phys. St. Sol. (a) Vol. 130 (1992), p.193.

Google Scholar

[7] S. Shevchenko and A. Tereshchenko: Phys. St. Sol. (c) Vol. 4 (2007), p.2898.

Google Scholar

[8] S. Shevchenko and A. Tereshchenko. Solid State Phenom. Vol. 131-133 (2008), p.583.

Google Scholar

[9] S.A. Shevchenko and A.N. Tereshchenko: Physics Solid State Vol. 49 (2007), p.28.

Google Scholar

[10] V.V. Kveder, Yu.A. Osipyan, W. Schröter and G. Zoth. Phys. St. Sol. (a) Vol. 72 (1982), p.701.

Google Scholar

[11] E. Simoen and C. Clayes, in: Ge-based Technologies: From Materials to Devices, edited by C. Clayes and E. Simoen, ch. 5, Elsevier, NY (2007).

Google Scholar

[12] W. Schröter. Phys. St. Sol. Vol. 21 (1967), p.211.

Google Scholar

[13] Yu.A. Osipyan and S.A. Shevchenko. Sov. Phys. JETP Vol. 65 (1973), p.698.

Google Scholar

[14] I.M. Kotina, V.V. Kuryatkov, S.R. Novikov and T.I. Pirozhkova. Sov. Phys. Semicond. Vol. 21 (1987), p.635.

Google Scholar

[16] R.I. Gloriozova and L.I. Kolesnik. Semicond. 27 (1993), p.303.

Google Scholar

[17] A. G. Tweet. Phys. Rev. Vol. 106 (1957), p.221.

Google Scholar