Formation of Radiation-Induced Defects in Si Crystals Irradiated with Electrons at Elevated Temperatures

Article Preview

Abstract:

Defects induced in silicon crystals by irradiations with 6 MeV electrons in the temperature range 60 to 500 oC have been studied by means of deep level transient spectroscopy (DLTS) and high-resolution Laplace DLTS. Diodes for the study were fabricated on n-type epitaxially grown Si wafers. The DLTS spectra for the samples irradiated at elevated temperatures were compared with those for samples, which were subjected to irradiation at 60 oC and subsequent isochronal anneals in a furnace. The dominant radiation-induced defects in the samples irradiated at temperatures lower than 400 oC were found to be vacancy-oxygen (VO) and interstitial carbon – interstitial oxygen (CiOi) complexes. The introduction rates of the VO and CiOi centers increased about twice upon raising the irradiation temperature from 50 to 400 oC. It is argued that this effect is associated with either a) the suppression of the annihilation rate of Frenkel pairs or b) a decrease in the threshold energy for displacement of a host Si atom upon increase in the irradiation temperature. Transformations of deep level traps due to divacancies (V2) and trivacancies (V3) to V2-oxygen and V3-oxygen complexes were found to occur upon irradiation or annealing at temperatures exceeding 250 oC. A clear anti-correlation between changes in the minority carrier life time induced in the p+-n diodes by irradiation at different temperatures and changes in the concentrations of radiation-induced vacancy- and vacancy-oxygen-related complexes was found.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 156-158)

Pages:

299-304

Citation:

Online since:

October 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.A. Buyanova, B. Monemar, J.L. Lindström, T. Hallberg, L.I. Murin and V.P. Markevich: Materials Science and Engineering Vol. B72 (2000), p.146.

DOI: 10.1016/s0921-5107(99)00491-2

Google Scholar

[2] J.L. Lindström, L.I. Murin, T. Hallberg, V.P. Markevich, B.G. Svensson, M. Kleverman and J. Hermansson: Nucl. Instrum. Methods Phys. Res. B Vol. 186 (2002), p.121.

Google Scholar

[3] L.I. Murin, J.L. Lindström, B. G. Svensson, V.P. Markevich, A.R. Peaker and C.A. Londos: Solid State Phenomena Vol. 108-109 (2005), p.267.

DOI: 10.4028/www.scientific.net/ssp.108-109.267

Google Scholar

[4] L. Dobaczewski, A.R. Peaker and K. Bonde Nielsen: J. Appl. Phys. Vol. 96 (2004) p.4689.

Google Scholar

[5] L.C. Kimerling, in: Radiation Effects in Semiconductors 1976, edited by N.B. Urli and J.W. Corbett, Inst. Phys. Conf. Ser. No 31 (1977), p.221.

Google Scholar

[6] S.D. Brotherton and P. Bradley: J. Appl. Phys. Vol. 53 (1982), p.5720.

Google Scholar

[7] V.P. Markevich, A.R. Peaker, S.B. Lastovskii, L.I. Murin and J.L. Lindström: J. Phys.: Condens. Matter Vol. 15 (2003), p. S2779.

DOI: 10.1088/0953-8984/15/39/002

Google Scholar

[8] G.D. Watkins and J.W. Corbett: Phys. Rev. Vol. 121 (1961), p.1001.

Google Scholar

[9] A.O. Evwarye and E. Sun: J. Appl. Phys. Vol. 47 (1976), p.3776.

Google Scholar

[10] P.M. Mooney, L.J. Chang, M. Süli, J.D. Gerson and J.W. Corbett: Phys. Rev. B Vol. 15 (1977), p.3836.

Google Scholar

[11] A. Hallén, N. Keskitalo, F. Masszi and V. Nágl: J. Appl. Phys. Vol. 79 (1996), p.3906.

Google Scholar

[12] V.P. Markevich, L.I. Murin, S.B. Lastovskii, I.F. Medvedeva, B.A. Komarov, J.L. Lindström and A.R. Peaker: J. Phys.: Condens. Matter Vol. 17 (2005), p. S2331.

DOI: 10.1088/0953-8984/17/22/022

Google Scholar

[13] L.C. Kimerling and J.L. Benton: Appl. Phys. Lett. Vol. 39 (1981), p.410.

Google Scholar

[14] J.L. Lindstrom, T. Hallberg, J. Hermansson, L.I. Murin, B.A. Komarov, V.P. Markevich, M. Kleverman and B.G. Svensson: Physica B Vol. 308-310 (2001), p.284.

DOI: 10.1016/s0921-4526(01)00694-9

Google Scholar

[15] V.P. Markevich et al.: Solid State Phenomena Vol. 108-109 (2005), p.273.

Google Scholar

[16] V.P. Markevich et al.: submitted to Phys. Rev. Lett (2009).

Google Scholar

[17] D.V. Makhov and L.J. Lewis: Phys. Rev. Let. Vol. 92 (2004), p.255504.

Google Scholar

[18] E.V. Monakhov, B.S. Avset, A. Hallén and B.G. Svensson: Phys. Rev. B Vol. 65 (2002), p.233207.

Google Scholar

[19] G. Alfieri, E.V. Monakhov, B.S. Avset: B.G. Svensson: Phys. Rev. B Vol. 68 (2003), p.233202.

Google Scholar

[20] M. Mikelsen, E.V. Monakhov, B.S. Avset and B.G. Svensson: Physica Scripta Vol. T126 (2006), p.81.

DOI: 10.1088/0031-8949/2006/t126/019

Google Scholar

[21] D.C. Schmidt et al.: J. Appl. Phys. Vol. 85 (1999), p.3566.

Google Scholar

[22] J. Lalita, B.G. Svensson and C. Jagadish: Nucl. Instrum. Methods Phys. Res. B Vol. 186 (2002), p.121.

Google Scholar

[23] R.E. Whan and F.L. Vook: Phys. Rev. Vol. 153 (1967), p.814.

Google Scholar

[24] M.T. Zawadski, W. Luo and P. Clancy: Phys. Rev. B Vol. 63 (2001), p.205205.

Google Scholar