1207cm-1 Infrared Absorption Band in Carbon-Rich Silicon Crystal

Article Preview

Abstract:

Silicon wafers with different carbon contents have been characterized by Fourier transform infrared spectroscopy technique. An infrared absorption band at 1207cm-1 can be newly observed in the case of carbon content being above 1.7×1017/cm3, whose intensity increases with an increase of carbon concentration in silicon crystal. More interestingly, the 1207cm-1 band cannot be influenced by the long-time annealing in the temperature range of 450-1250oC, suggesting the high thermal stability of this carbon-related defect, which might be related to the presence of silicon carbide in silicon crystals.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 178-179)

Pages:

172-177

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.C. Newman, Defects in Silicon, Rep. Prog. Phys. 45 (1982) 1163-1210.

Google Scholar

[2] C.A. Londos, M.S. Potsidi and V.V. Emtsev, Effect of carbon on oxygen precipitation in Czochralski silicon. Physica Status Solidi C 2 (2005) 1963-(1967).

DOI: 10.1002/pssc.200460537

Google Scholar

[3] Q. Sun, KH Yao, J Lagowski, Effect of carbon on oxygen precipitation in silicon. Journal of Applied Physics 67 (1990) 4313-4319.

DOI: 10.1063/1.344947

Google Scholar

[4] F. Shimura, Carbon enhancement effect on oxygen precipitation in Czochralski silicon. Journal of Applied Physics 59 (1986) 3251-3254.

DOI: 10.1063/1.336907

Google Scholar

[5] D.R. Yang and H.J. Moeller, Effect of heat treatment on carbon in multicrystalline silicon. Solar Energy Materials and Solar Cells 72 (2002) 541-549.

DOI: 10.1016/s0927-0248(01)00203-3

Google Scholar

[6] R.C. Newman, in handbook on semiconductors, (1994).

Google Scholar

[7] G.P. Du, L Zhou, P Rossetto, Hard inclusions and their detrimental effects on the wire sawing process of multicrystalline silicon. Solar Energy Materials and Solar Cells 91 (2007) 1743-1748.

DOI: 10.1016/j.solmat.2007.06.001

Google Scholar

[8] N. Akiyama, Y Yatsurugi, Y Endo, Lowering of breakdown voltage of semiconductor silicon due to precipitation of impurity carbon. Applied Physics Letters 22 (1973) 630-631.

DOI: 10.1063/1.1654534

Google Scholar

[9] R.C. Newman and J.B. Willis, Vibrational absorption of carbon in silicon. Journal of Physics and Chemistry of Solids 26 (1965) 373-375.

Google Scholar

[10] P. Liu, X. Ma, J. Zhang, L. Li, D. Que, Evidence for the effect of carbon on oxygen precipitation in Czochralski silicon crystal, J. Appl. Phys. 87 (2000) 3669-3673.

DOI: 10.1063/1.372397

Google Scholar

[11] A.R. Bean and R.C. Newman, Solubility of carbon in pulled silicon crystals. Journal of Physics and Chemistry of Solids 32 (1971) 1211-1214.

DOI: 10.1016/s0022-3697(71)80179-8

Google Scholar

[12] L. Zhong, L. Ling and F. Shimura, Effect of hydrogen treatment upon silicon surface investigated with the multiple internal-reflection infrared-spectroscopy. Applied Physics Letters 63 (1993) 99-101.

DOI: 10.1063/1.109710

Google Scholar

[13] A. Sassella, A Borghesi, B Pivac, Evaluation of the precipitate contribution to the infrared absorption in interstitial oxygen measurements in silicon. Applied Physics Letters 79 (2001) 4106-4108.

DOI: 10.1063/1.1425457

Google Scholar

[14] L.J. Liu, S. Nakano and K. Kakimoto, Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells. Journal of Crystal Growth 310 (2008) 2192-2197.

DOI: 10.1016/j.jcrysgro.2007.11.165

Google Scholar