External and Internal Gettering of Interstitial Iron in Silicon for Solar Cells

Article Preview

Abstract:

The removal of dissolved iron from the wafer bulk is important for the performance of p-type multicrystalline silicon solar cells. In this paper we review some recent progress in understanding both external and internal gettering of iron. Internal gettering at grain boundaries and dislocations occurs naturally during ingot cooling, and can also be driven further during cell processing, especially by moderate temperature anneals (usually below 700 °C). Internal gettering at intra-grain defects plays key a role during such precipitation annealing. External gettering to phosphorus diffused regions is crucial in reducing the dissolved iron concentration during cell processing, although its effectiveness depends strongly on the diffusion temperature and profile. Gettering of Fe by boron and aluminum diffusions is also found to be very effective under certain conditions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

26-33

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Buonassisi, et al., Chemical natures and distributions of metal impurities in multicrystalline silicon materials, Progress in Photovoltaics: Research and Applications, 14, (2006) 513.

Google Scholar

[2] E. Olsen and E. J. Øvrelid, Silicon nitride coating and crucible - effects of using upgraded materials in the casting of multicrystalline silicon ingots, Progress in Photovoltaics: Research and Applications, 16, (2007) 93.

DOI: 10.1002/pip.777

Google Scholar

[3] A. A. Istratov, T. Buonassisi, R. J. McDonald, A. R. Smith, R. Schindler, J. A. Rand, J. P. Kalejs and E. R. Weber, Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length, Journal of Applied Physics, 94, (2003).

DOI: 10.1063/1.1618912

Google Scholar

[4] D. Macdonald, A. Cuevas, A. Kinomura, Y. Nakano and L. J. Geerligs, Transition metal profiles in a multicrystalline silicon ingot, Journal of Applied Physics, 97, (2005) 033523.

DOI: 10.1063/1.1845584

Google Scholar

[5] T. Buonassisi, et al., Synchrotron-based investigations of the nature and impact of iron contamination in multicrystalline silicon solar cells, Journal of Applied Physics, 97, (2005) 074901.

DOI: 10.1063/1.1866489

Google Scholar

[6] J. Schmidt and D. Macdonald, Recombination activity of iron-gallium and iron-indium pairs in silicon, Journal of Applied Physics, 97, (2005) 113712.

DOI: 10.1063/1.1929096

Google Scholar

[7] A. A. Istratov, H. Hieslmair and E. R. Weber, Iron and its complexes in silicon, Applied Physics A, 69, (1999) 13.

DOI: 10.1007/s003390050968

Google Scholar

[8] D. Macdonald, T. Roth, P. N. K. Deenapanray, T. Trupke and R. A. Bardos, Doping dependence of the carrier lifetime crossover point upon dissociation of iron-boron pairs in crystalline silicon, Applied Physics Letters, 89, (2006) 142107.

DOI: 10.1063/1.2358126

Google Scholar

[9] D. Macdonald, J. Tan and T. Trupke, Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence, Journal of Applied Physics, 103, (2008) 073710.

DOI: 10.1063/1.2903895

Google Scholar

[10] D. Macdonald and L. J. Geerligs, Recombination activity of iron and other transition metal point defects in n- and p-type crystalline silicon, Applied Physics Letters, 85, (2004) 4061.

DOI: 10.1063/1.1812833

Google Scholar

[11] A. Cuevas, Modelling silicon characterisation, Energy Procedia, 8, (2011) 94.

Google Scholar

[12] W. M. Bullis and H. R. Huff, Interpretation of carrier recombination lifetime and diffusion length measurements in silicon, J. Electrochem. Soc., 143, (1996) 1399.

DOI: 10.1149/1.1836650

Google Scholar

[13] M. J. Kerr and A. Cuevas, General parameterization of Auger recombination in crystalline silicon, Journal of Applied Physics, 91, (2002) 2473.

DOI: 10.1063/1.1432476

Google Scholar

[14] G. Zoth and W. Bergholz, A fast, preparation-free method to detect iron in silicon, Journal of Applied Physics, 67, (1990) 6764.

DOI: 10.1063/1.345063

Google Scholar

[15] D. Macdonald, L. J. Geerligs and A. Azzizi, Iron detection in crystalline silicon by carrier lifetime measurements for arbitrary injection and doping, Journal of Applied Physics, 95, (2004) 1021.

DOI: 10.1063/1.1637136

Google Scholar

[16] H. Reiss, C. S. Fuller and F. J. Morin, Chemical interactions among defects in germanium and silicon, Bell System Technical Journal, 35, (1956) 535.

DOI: 10.1002/j.1538-7305.1956.tb02393.x

Google Scholar

[17] J. Tan, D. Macdonald, F. Rougieux and A. Cuevas, Accurate measurement of the formation rate of iron–boron pairs in silicon, Semiconductor Science and Technology, 26, (2011) 055019.

DOI: 10.1088/0268-1242/26/5/055019

Google Scholar

[18] D. Macdonald, A. Cuevas and L. J. Geerligs, Measuring dopant concentrations in compensated p-type crystalline silicon via iron-acceptor pairing, Applied Physics Letters, 92, (2008) 202119.

DOI: 10.1063/1.2936840

Google Scholar

[19] T. Trupke, R. A. Bardos, M. C. Schubert and W. Warta, Photoluminescence imaging of silicon wafers, Applied Physics Letters, 89, (2006) 044107.

DOI: 10.1063/1.2234747

Google Scholar

[20] A. Liu, Y. -C. Fan and D. Macdonald, Interstitial iron concentrations across multicrystalline silicon wafers via photoluminescence imaging, Progress in Photovoltaics: Research and Applications, 19, (2011) 649.

DOI: 10.1002/pip.1082

Google Scholar

[21] T. Buonassisi, et al., Impact of metal silicide precipitate dissolution during rapid thermal processing of multicrystalline silicon solar cells, Applied Physics Letters, 87, (2005) 121918.

DOI: 10.1063/1.2048819

Google Scholar

[22] A. Y. Liu, D. Walter, S. P. Phang and D. Macdonald, Investigating internal gettering of iron at grain boundaries in multicrystalline silicon via photoluminescence imaging, IEEE Journal of Photovoltaics, 2, (2012) 479.

DOI: 10.1109/jphotov.2012.2195550

Google Scholar

[23] A. Liu, D. Walter, S. P. Phang and D. Macdonald, Imaging and modelling the internal gettering of interstitial iron by grain boundaries in multicrystalline silicon, 38th IEEE Photovoltaic Specialists Conference (2012) 248.

DOI: 10.1109/pvsc.2012.6317611

Google Scholar

[24] A. Y. Liu, D. Walter and D. Macdonald, Investigating precipitation and dissolution of iron in multicrystalline silicon wafers during annealing, 22nd International Photovoltaic Science and Engineering Conference (2012).

Google Scholar

[25] A. Liu and D. Macdonald, Precipitation of interstitial iron in multicrystalline silicon, this publication, (2013).

Google Scholar

[26] S. P. Phang, W. Liang, B. Wolpensinger, M. A. Kessler and D. Macdonald, Trade-offs between impurity gettering, bulk degradation, and surface passivation of boron rich layers on silicon solar cells, IEEE Journal of Photovoltaics, 3, (2013) 261.

DOI: 10.1109/jphotov.2012.2226332

Google Scholar

[27] S. P. Phang and D. Macdonald, Direct comparison of boron, phosphorus and aluminum gettering of iron in crystalline silicon, Journal of Applied Physics, 109, (2011) 073521.

DOI: 10.1063/1.3569890

Google Scholar

[28] S. P. Phang and D. Macdonald, Effect of boron co-doping and phosphorus concentration on phosphorus diffusion gettering, IEEE Journal of Photovoltaics, (2013) submitted.

DOI: 10.1109/jphotov.2013.2281740

Google Scholar

[29] K. Ryu, A. Upadhyaya, H. J. Song, C. J. Choi, A. Rohatgi and Y. W. Ok, Chemical etching of boron-rich layer and its impact on high efficiency n-type silicon solar cells, Applied Physics Letters, 101, (2012) 073902.

DOI: 10.1063/1.4746424

Google Scholar