[1]
T. Buonassisi, et al., Chemical natures and distributions of metal impurities in multicrystalline silicon materials, Progress in Photovoltaics: Research and Applications, 14, (2006) 513.
Google Scholar
[2]
E. Olsen and E. J. Øvrelid, Silicon nitride coating and crucible - effects of using upgraded materials in the casting of multicrystalline silicon ingots, Progress in Photovoltaics: Research and Applications, 16, (2007) 93.
DOI: 10.1002/pip.777
Google Scholar
[3]
A. A. Istratov, T. Buonassisi, R. J. McDonald, A. R. Smith, R. Schindler, J. A. Rand, J. P. Kalejs and E. R. Weber, Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length, Journal of Applied Physics, 94, (2003).
DOI: 10.1063/1.1618912
Google Scholar
[4]
D. Macdonald, A. Cuevas, A. Kinomura, Y. Nakano and L. J. Geerligs, Transition metal profiles in a multicrystalline silicon ingot, Journal of Applied Physics, 97, (2005) 033523.
DOI: 10.1063/1.1845584
Google Scholar
[5]
T. Buonassisi, et al., Synchrotron-based investigations of the nature and impact of iron contamination in multicrystalline silicon solar cells, Journal of Applied Physics, 97, (2005) 074901.
DOI: 10.1063/1.1866489
Google Scholar
[6]
J. Schmidt and D. Macdonald, Recombination activity of iron-gallium and iron-indium pairs in silicon, Journal of Applied Physics, 97, (2005) 113712.
DOI: 10.1063/1.1929096
Google Scholar
[7]
A. A. Istratov, H. Hieslmair and E. R. Weber, Iron and its complexes in silicon, Applied Physics A, 69, (1999) 13.
DOI: 10.1007/s003390050968
Google Scholar
[8]
D. Macdonald, T. Roth, P. N. K. Deenapanray, T. Trupke and R. A. Bardos, Doping dependence of the carrier lifetime crossover point upon dissociation of iron-boron pairs in crystalline silicon, Applied Physics Letters, 89, (2006) 142107.
DOI: 10.1063/1.2358126
Google Scholar
[9]
D. Macdonald, J. Tan and T. Trupke, Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence, Journal of Applied Physics, 103, (2008) 073710.
DOI: 10.1063/1.2903895
Google Scholar
[10]
D. Macdonald and L. J. Geerligs, Recombination activity of iron and other transition metal point defects in n- and p-type crystalline silicon, Applied Physics Letters, 85, (2004) 4061.
DOI: 10.1063/1.1812833
Google Scholar
[11]
A. Cuevas, Modelling silicon characterisation, Energy Procedia, 8, (2011) 94.
Google Scholar
[12]
W. M. Bullis and H. R. Huff, Interpretation of carrier recombination lifetime and diffusion length measurements in silicon, J. Electrochem. Soc., 143, (1996) 1399.
DOI: 10.1149/1.1836650
Google Scholar
[13]
M. J. Kerr and A. Cuevas, General parameterization of Auger recombination in crystalline silicon, Journal of Applied Physics, 91, (2002) 2473.
DOI: 10.1063/1.1432476
Google Scholar
[14]
G. Zoth and W. Bergholz, A fast, preparation-free method to detect iron in silicon, Journal of Applied Physics, 67, (1990) 6764.
DOI: 10.1063/1.345063
Google Scholar
[15]
D. Macdonald, L. J. Geerligs and A. Azzizi, Iron detection in crystalline silicon by carrier lifetime measurements for arbitrary injection and doping, Journal of Applied Physics, 95, (2004) 1021.
DOI: 10.1063/1.1637136
Google Scholar
[16]
H. Reiss, C. S. Fuller and F. J. Morin, Chemical interactions among defects in germanium and silicon, Bell System Technical Journal, 35, (1956) 535.
DOI: 10.1002/j.1538-7305.1956.tb02393.x
Google Scholar
[17]
J. Tan, D. Macdonald, F. Rougieux and A. Cuevas, Accurate measurement of the formation rate of iron–boron pairs in silicon, Semiconductor Science and Technology, 26, (2011) 055019.
DOI: 10.1088/0268-1242/26/5/055019
Google Scholar
[18]
D. Macdonald, A. Cuevas and L. J. Geerligs, Measuring dopant concentrations in compensated p-type crystalline silicon via iron-acceptor pairing, Applied Physics Letters, 92, (2008) 202119.
DOI: 10.1063/1.2936840
Google Scholar
[19]
T. Trupke, R. A. Bardos, M. C. Schubert and W. Warta, Photoluminescence imaging of silicon wafers, Applied Physics Letters, 89, (2006) 044107.
DOI: 10.1063/1.2234747
Google Scholar
[20]
A. Liu, Y. -C. Fan and D. Macdonald, Interstitial iron concentrations across multicrystalline silicon wafers via photoluminescence imaging, Progress in Photovoltaics: Research and Applications, 19, (2011) 649.
DOI: 10.1002/pip.1082
Google Scholar
[21]
T. Buonassisi, et al., Impact of metal silicide precipitate dissolution during rapid thermal processing of multicrystalline silicon solar cells, Applied Physics Letters, 87, (2005) 121918.
DOI: 10.1063/1.2048819
Google Scholar
[22]
A. Y. Liu, D. Walter, S. P. Phang and D. Macdonald, Investigating internal gettering of iron at grain boundaries in multicrystalline silicon via photoluminescence imaging, IEEE Journal of Photovoltaics, 2, (2012) 479.
DOI: 10.1109/jphotov.2012.2195550
Google Scholar
[23]
A. Liu, D. Walter, S. P. Phang and D. Macdonald, Imaging and modelling the internal gettering of interstitial iron by grain boundaries in multicrystalline silicon, 38th IEEE Photovoltaic Specialists Conference (2012) 248.
DOI: 10.1109/pvsc.2012.6317611
Google Scholar
[24]
A. Y. Liu, D. Walter and D. Macdonald, Investigating precipitation and dissolution of iron in multicrystalline silicon wafers during annealing, 22nd International Photovoltaic Science and Engineering Conference (2012).
Google Scholar
[25]
A. Liu and D. Macdonald, Precipitation of interstitial iron in multicrystalline silicon, this publication, (2013).
Google Scholar
[26]
S. P. Phang, W. Liang, B. Wolpensinger, M. A. Kessler and D. Macdonald, Trade-offs between impurity gettering, bulk degradation, and surface passivation of boron rich layers on silicon solar cells, IEEE Journal of Photovoltaics, 3, (2013) 261.
DOI: 10.1109/jphotov.2012.2226332
Google Scholar
[27]
S. P. Phang and D. Macdonald, Direct comparison of boron, phosphorus and aluminum gettering of iron in crystalline silicon, Journal of Applied Physics, 109, (2011) 073521.
DOI: 10.1063/1.3569890
Google Scholar
[28]
S. P. Phang and D. Macdonald, Effect of boron co-doping and phosphorus concentration on phosphorus diffusion gettering, IEEE Journal of Photovoltaics, (2013) submitted.
DOI: 10.1109/jphotov.2013.2281740
Google Scholar
[29]
K. Ryu, A. Upadhyaya, H. J. Song, C. J. Choi, A. Rohatgi and Y. W. Ok, Chemical etching of boron-rich layer and its impact on high efficiency n-type silicon solar cells, Applied Physics Letters, 101, (2012) 073902.
DOI: 10.1063/1.4746424
Google Scholar