Precipitation of Interstitial Iron in Multicrystalline Silicon

Article Preview

Abstract:

The internal gettering of iron in silicon via iron precipitation at low processing temperatures is known to improve solar cell efficiencies. Studies have found that the optimal temperature lies in the range of 500°C-600°C. In this paper, we present experimental results on quantitatively analysing the precipitation of interstitial Fe in multicrystalline silicon wafers during the 500°C-600°C thermal annealing processes. The concentration and the spatial distribution of interstitial Fe in mc-Si were measured by the photoluminescence imaging technique. It was found that, apart from the processing temperature, the Fe precipitation time constant is highly dependent on the supersaturation ratio and the density and types of the precipitation sites.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

34-39

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. B. Henley and D. A. Ramappa, Iron precipitation in float zone grown silicon, Journal of Applied Physics, 82 (1997) 589-594.

DOI: 10.1063/1.365861

Google Scholar

[2] A. Haarahiltunen, H. Väinölä, O. Anttila, M. Yli-Koski, and J. Sinkkonen, Experimental and theoretical study of heterogeneous iron precipitation in silicon, Journal of Applied Physics, 101 (2007) 043507.

DOI: 10.1063/1.2472271

Google Scholar

[3] M. D. Pickett and T. Buonassisi, Iron point defect reduction in multicrystalline silicon solar cells, Applied Physics Letters, 92 (2008) 122103.

DOI: 10.1063/1.2898204

Google Scholar

[4] R. Krain, S. Herlufsen, and J. Schmidt, Internal gettering of iron in multicrystalline silicon at low temperature, Applied Physics Letters, 93 (2008) 152108.

DOI: 10.1063/1.2987521

Google Scholar

[5] T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, Photoluminescence imaging of silicon wafers, Applied Physics Letters, 89 (2006) 044107.

DOI: 10.1063/1.2234747

Google Scholar

[6] D. Macdonald, J. Tan, and T. Trupke, Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence, Journal of Applied Physics, 103 (2008) 073710.

DOI: 10.1063/1.2903895

Google Scholar

[7] T. Buonassisi, A. A. Istratov, S. Peters, C. Ballif, J. Isenberg, S. Riepe, W. Warta, R. Schindler, G. Willeke, Z. Cai, B. Lai, and E. R. Weber, Impact of metal silicide precipitate dissolution during rapid thermal processing of multicrystalline silicon solar cells, Applied Physics Letters, 87 (2005).

DOI: 10.1063/1.2048819

Google Scholar

[8] A. Y. Liu, D. Walter, and D. Macdonald, Studying precipitation and dissolution of iron in multicrystalline silicon wafers during annealing, in The 22nd International Photovoltaic Science and Engineering Conference Hang Zhou, China, (2012).

Google Scholar

[9] D. Walter, A. Y. Liu, E. Franklin, D. Macdonald, B. Mitchell, and T. Trupke, Contrast enhancement of luminescence images via point-spread deconvolution, in Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, 2012, 000307-000312.

DOI: 10.1109/pvsc.2012.6317624

Google Scholar

[10] J. D. Murphy and R. J. Falster, Contamination of silicon by iron at temperatures below 800°C, Physica Status Solidi RRL, 5 (2011) 370-372.

DOI: 10.1002/pssr.201105388

Google Scholar

[11] A. Y. Liu, D. Walter, S. P. Phang, and D. Macdonald, Investigating Internal Gettering of Iron at Grain Boundaries in Multicrystalline Silicon via Photoluminescence Imaging, IEEE Journal of Photovoltaics, 2 (2012) 479-484.

DOI: 10.1109/jphotov.2012.2195550

Google Scholar