Light-Induced Boron-Oxygen Recombination Centres in Silicon: Understanding their Formation and Elimination

Article Preview

Abstract:

Lifetime-degrading recombination centres those that emerge in the presence of excess carriers in boron and oxygen containing silicon - show a peculiar dependence on the concentrations of the relevant impurities, B and O, and on the hole concentration p0 (net doping) in materials that contain compensating donors (phosphorus or Thermal Donors) or added Ga acceptors. The data indicate involvement of both substitutional (Bs) and interstitial (Bi) boron atoms in the major recombination centres observed in p-Si. A suggested model ascribes degradation to the presence of a BiBsO latent defect inherited from the thermal history in a recombination-inactive atomic configuration. In the presence of excess electrons, this latent defect reconfigures into a recombination-active centre. The defect concentration dependence on the material parameters is reduced, in some special cases, to a proportionality to p0 [2 or to [ [2. The essential feature is an involvement of a fast-diffusing species Bi in the defect. This species can be removed to the boron nanoprecipitates thus eliminating the defects responsible for the degradation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

3-14

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Fischer and W. Pshunder, Proc. 10-th IEEE PVSC (IEEE, New York 1973), p.404.

Google Scholar

[2] J. Schmidt, A. G. Aberle and R. Hezel, Proc. 26-th IEEE PVSC (IEEE, New York 1977).

Google Scholar

[3] S. W. Glunz, S. Rein, J. Y. Lee and W. Warta, J. Appl. Phys. 90, 2397 (2001).

Google Scholar

[4] K. Bothe and J. Schmidt, J. Appl. Phys. 99, 013701 (2006).

Google Scholar

[5] V. V. Voronkov, R. Falster, K. Bothe, B. Lim and J. Schmidt, J. Appl. Phys. 110, 063515 (2011).

Google Scholar

[6] J. Murphy, K. Bothe, R. Krain, V. V. Voronkov and R. Falster, J. Appl. Phys. 111, 113709 (2012).

Google Scholar

[7] R. Kopecek, J. Arumughan, K. Peter, E. A. Good, J. Libal, M. Acciari and S. Binetti, Proc. 23-rd European Photovoltaic Solar Energy Conference (WIP Munich 2008), p.1855.

Google Scholar

[8] D. Macdonald, F. Rougieux, A. Cuevas, B. Lim, J. Schmidt, M. Di Sabatino and L. J. Geerrligs, J. Appl. Phys. 105, 093704 (2009).

Google Scholar

[9] B. Lim, F. Rougieux, D. Macdonald, K. Bothe and J. Schmidt, J. Appl. Phys. 108, 103722 (2010).

Google Scholar

[10] J. Geilker, W. Kwapil and S. Rein, J. Appl. Phys. 109, 053718 (2011).

Google Scholar

[11] K. Bothe, J. Scmidt and R. Hezel, Proc. 29-th IEEE PVSC (IEEE, New York 2002), p.194.

Google Scholar

[12] M. Forster, E. Fourmond, F. E. Rougieux, A. Cuevas, R. Gotoh, K. Fujiwara, S. Uda and M. Lemiti, Appl. Phys. Lett. 100, 042110 (2012).

DOI: 10.1063/1.3680205

Google Scholar

[13] M. Forster, P. Wagner, J. Degoulange, R. Einhaus, G. Galbari, F. E. Rougieux, A. Cuevas, E. Fourmond and M. Lemiti, Proc. Silicon PV Conference (Hamelin 2013).

Google Scholar

[14] J. Schmidt and K. Bothe, Phys. Rev. B69, 024107 (2004).

Google Scholar

[15] V. V. Voronkov, R. Falster and A. V. Batunina, Phys. Stat. Sol. A208, 576 (2011).

Google Scholar

[16] V. V. Voronkov, R. Falster, J. Schmidt, K. Bothe and A. V. Batunina, ECS Transactions 33, 103 (2010).

DOI: 10.1149/1.3485685

Google Scholar

[17] B. Lim, V. V. Voronkov, R. Falster, K. Bothe and J. Schmidt, Appl. Phys. Lett. 98, 162104 (2011).

Google Scholar

[18] D. W. Palmer, K. Bothe and J. Schmidt, Phys. Rev. B76, 035210 (2007).

Google Scholar

[19] L. I. Murin, T. Hallberg, V. P. Markevich and J. L. Lindstrom, Phys. Rev. Lett. 80, 93 (1998).

Google Scholar

[20] D. Aberg, B. G. Swensson, T. Halberg and J. L. Lindstrom, Phys. Rev. B58, 12944 (1998).

Google Scholar

[21] V. V. Voronkov, R. Falster, K. Bothe and B. Lim, Proc. Silicon PV Conference (Hamelin 2013).

Google Scholar

[22] V. V. Voronkov and R. Falster, J. Appl. Phys. 107, 053509 (2010).

Google Scholar

[23] R. D. Harris, J. L. Newton and G. D. Watkins, Phys. Rev. B36, 1094 (1987).

Google Scholar

[24] A. Herguth, G. Schubert, M. Kaes and G. Hahn, Proc. 21-2t EUPVSEC (Dresden, 2006), p.530.

Google Scholar

[25] A. Herguth, G. Schubert, M. Kaes and G. Hahn, Prog. Photovolataics 16, 135 (2008).

Google Scholar

[26] B. Lim, A. Liu, D. Macdonald, K. Bothe and J. Schmidt, Appl. Phys. Lett. 95, 232109 (2009).

Google Scholar

[27] B. Lim, K. Bothe and J. Schmidt, J. Appl. Phys. 107, 123707 (2010).

Google Scholar

[28] V. V. Voronkov, R. Falster, B. Lim and J. Schmidt, J. Appl. Phys. 112, 113717 (2012).

Google Scholar

[29] S. Wilking, A. Herguth and G. Hahn, Proc. Silicon PV Conference (Hamelin 2013).

Google Scholar

[30] W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952).

Google Scholar

[31] R. N. Hall, Phys. Rev. 87, 387 (1952).

Google Scholar

[32] A. R. Peaker, V. P. Markevich, B. Hamilton, G. Parada, A. Pap, E. Don, B. Lim, J. Schmidt, L. Yu, Y. Yoon and G. Rozgonyi, Phys. Status Solidi A 209, No. 10, 1884–1893 (2012).

DOI: 10.1002/pssa.201200216

Google Scholar