Influence of Cu Concentration on the Getter Efficiency of Dislocations and Oxygen Precipitates in Silicon Wafers

Article Preview

Abstract:

Two getter tests were carried out in order to study the getter efficiency of oxygen precipitates in silicon samples contaminated with low and high Cu concentration. The samples were pre-treated by RTA followed by annealing in the temperature range between 700 °C and 1000 °C for various times in order to establish different concentrations and different sizes of oxygen precipitates in the samples. From the analysis of the results of the normalized inner surface and the gettering efficiency, it was deduced that in highly contaminated samples Cu precipitates more easily at dislocations than at the surface of oxygen precipitates. Contrarily, in the samples contaminated with low Cu concentration the presence of dislocations does not improve the getter efficiency. Cu precipitates were found at the edge of a plate-like precipitate in a sample with low Cu concentration.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

278-283

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Takiyama, N. Steel, in Ultraclean Surface Processing of Silicon Wafers: Secrets of VLSI Manufacturing edited by T. Hattori, Springer, Berlin, 1998, 42-56.

DOI: 10.1007/978-3-662-03535-1_1

Google Scholar

[2] R. J. Falster, G. R. Fisher, and G. Ferrero, Appl. Phys. Lett., Vol. 59 (1991) 809.

Google Scholar

[3] D. Kot, G. Kissinger, W. Häckl, A. Sattler, W. von Ammon, ECS Transactions, Vol. 16(6) (2008) 207.

Google Scholar

[4] B. Shen, T. Sekiguchi, J. Jablonski, K. Sumino, J. Appl. Phys., Vol. 76 (1994) 4540.

Google Scholar

[5] E. R. Weber, Impurity Precipitation, Dissolution, Gettering, and Passivation in PV Silicon, Final Technical Report, February 2002, NREL/SR-520-31528.

DOI: 10.2172/15000243

Google Scholar

[6] A. A. Istratov, R. Sachdeva, C. Flink, S. Balasubramabian, E. R. Weber, Solid State Phenomena, Vols. 82-84 (2002) 323.

Google Scholar

[7] M. Seacrist, M. Stinson, J. Libbert, R. Standley, and J. Bins, in Semiconductor Silicon/2002, H. R. Huff, L. Fabry and S. Kishino, Editors, PV 2002-2, p.638, The Electrochemical Proceedings Series, Pennington, NJ (2002).

Google Scholar

[8] K. Sueoka, S. Ohara, S. Shiba, S. Fukatani, ECS Transactions, Vol. 2 (2006) 261.

Google Scholar

[9] R. J. Falster. V. V. Voronkov, V. Y. Resnick, M. G. Milvidskii, Electrochem. Soc. Proc., Vol. 5 (2004) 188.

Google Scholar

[10] R. Hölzl, M. Blietz, L. Fabry, R. Schmolke, Proc. Semiconductor Silicon 2002, ed. by H. R. Huff, L. Fabry, S. Kishino, in: Electrochem. Soc. Proc. Vol. 2002-2, 608 (2002).

Google Scholar

[11] K. Sueoka, J. Electrochem. Soc., Vol. 152 (10) (2005) G731-G735.

Google Scholar

[12] A. Ourmazd, Appl. Phys. Lett., Vol. 45 (1984) 781.

Google Scholar

[13] F. Shimura, Semiconductors and Semimetals, Vol. 42 (1994) 577.

Google Scholar

[14] P. Bai, G. R. Yang, and T. M. Lu, J. Appl. Phys., Vol. 68 (1990) 3313.

Google Scholar

[15] M. Yonemura, K. Sueoka, K. Kamei, J. Appl. Phys., Vol. 88 (2000) 503.

Google Scholar

[16] S. Isomae, H. Ishida, T. Itoga, K. Hozawa, J. Electrochem. Soc., Vol. 194 (2002) G343.

DOI: 10.1149/1.1475694

Google Scholar

[17] R. Falster, M, Pagani, D. Gambaro, M. Cornara, M. Olmo, G. Ferrero, P. Pichler, M. Jacob, Solid State Phenomena, Vols 57-58 (1997) 129.

DOI: 10.4028/www.scientific.net/ssp.57-58.129

Google Scholar

[18] M. Pagani, R. Falster, G. R. Fisher, G. C. Ferrero, M. Olmo, Appl. Phys. Lett., Vol. 70 (12) (1997) 1572.

Google Scholar

[19] G. Kissinger, D. Kot, J. Dabrowski, V. Akhmetov, A. Sattler, and W. von Ammon, ECS Transactions, Vol. 16 (6) (2008) 97.

DOI: 10.1149/1.2980296

Google Scholar

[20] K. Graff, Metal Impurities in Silicon-Device Fabrication in: Springer Ser. Mater. Sci. 24 (1995) 52.

Google Scholar

[21] E. R. Weber, Appl Phys. A, Vol. 30 (1983) 1.

Google Scholar

[22] F. Secco d'Aragona, J. Electrochem. Soc., Vol. 119 (1972) 948.

Google Scholar

[23] M. B. Shabani, T. Yoshimi, H. Abe, J. Electrochem. Soc., 143 (1996) (2025).

Google Scholar

[24] D. Kot, G. Kissinger, A. Sattler, W. von Ammon, ECS Transactions, Vol. 25(3) (2009) 67.

Google Scholar

[25] J. Vanhellemont, J. Appl. Phys., Vol. 78 (1995) 4297.

Google Scholar

[26] J. C. Mikkelsen, Jr., in Oxygen, Carbon, Hydrogen, and Nitrogen in Silicon, edited by I. C. Mikkelsen, Jr., S. J. Pearton, J. W. Corbett, and S. J. Pennycook (Materials Research Society, Princeton, NJ, 1986), p.19.

Google Scholar

[27] G. Kissinger, D. Kot, V. Akhmetov, A. Sattler, T. Müller, W. von Ammon, ECS Transactions, Vol. 18 (2009) 995.

DOI: 10.1149/1.3096563

Google Scholar

[28] D. Kot, G. Kissinger, M.A. Schubert, T. Müller, A. Sattler, Materials Science Forum, Vol. 725 (2012) 239.

Google Scholar

[29] E. Nes and J. Washburn, J. Appl. Phys., Vol. 44 (1973) 3682.

Google Scholar

[30] G. Das, J. Appl. Phys., Vol. 44 (1973) 4459.

Google Scholar

[31] N. Fujita, R. Jones, S. Öberg, P. R. Briddon, and A. T. Blumenau, Solid State Phenomena, Vols. 131-133 (2008) 259.

DOI: 10.4028/www.scientific.net/ssp.131-133.259

Google Scholar