Effect of Nitrogen-Doping on the Properties of Radiation Defect Centers in FZ Silicon

Article Preview

Abstract:

High-resolution photoinduced transient spectroscopy (HRPITS) has been applied to determining the properties and concentrations of radiation defect centers formed in FZ silicon single crystals subjected to doping with phosphorus in neutron transmutation processes. The studies were performed immediately after the neutron irradiation on the samples with the resistivity of the order of 105 Ωcm. The preset target resistivity was around 2000 Ωcm. The N-doping effect on the material radiation damage has been demonstrated. It is shown that in the N-enriched material, the radiation defect centers with activation energies of 81, 125, 160, 185, and 390 meV are not observed and the concentrations of the defect centers with activation energies of 46, 84, 133, 140, 265, 300, 380, 460, and 546 meV are significantly lower than those in the N-free material. We also show that the majority of defect centers produced by the irradiation of FZ silicon with fast neutrons are also observed after neutron transmutation doping.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

279-284

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Guldberg, Electron trap annealing in neutron transmutation doped silicon, Appl. Phys. Lett. 31 (1977) 578-579.

DOI: 10.1063/1.89785

Google Scholar

[2] M. Coeck, N. Balcaen, T. Van Hoecke, B. Van Waeyenberge, D. Segers, C. Dauwe, and C. Laermans, Defects in neutron transmutation doped silicon studied by positron annihilation lifetime measurements, J. Appl. Phys. 87 (2000) 3674-3677.

DOI: 10.1063/1.372398

Google Scholar

[3] R. Kozłowski,  P. Kamiński,  E. Nossarzewska-Orłowska, High-resolution photoinduced transient spectroscopy of neutron irradiated bulk silicon, Nucl. Instr. Meth. Phys. Res. A 476 (2002) 639-644.

DOI: 10.1016/s0168-9002(01)01652-7

Google Scholar

[4] P. Kamiński, R. Kozłowski, and J. Żelazko, Characterization of radiation defect centers in neutron irradiated Si using inverse Laplace transformation to analysis of photocurrent relaxation waveforms, Acta Physica Polonica A 125 (2014) 976-981.

DOI: 10.12693/aphyspola.125.976

Google Scholar

[5] J. Krupka,  W. Karcz,  S. P. Avdeyev, P. Kamiński,  R. Kozłowski,  Electrical properties of deuteron irradiated high resistivity silicon, Nucl. Instr. Meth. Phys. Res. B 325 (2014) 107-114.

DOI: 10.1016/j.nimb.2014.01.021

Google Scholar

[6] F. Sahtout Karoui and A. Karoui, A density functional theory study of the atomic structure, formation energy, and vibrational properties of nitrogen-vacancy-oxygen defects in silicon, J. Appl. Phys. 108 (2010) 033513-1-13.

DOI: 10.1063/1.3387912

Google Scholar

[7] M. Moll, H. Feick, E. Fretwurst, G. Lindström, C. Schütze, Comparison of defects produced by fast neutrons and 60Co-gammas in high-resistivity silicon detectors using deep-level transient spectroscopy, Nucl. Instr. Meth. Phys. Res. A 388 (1997).

DOI: 10.1016/s0168-9002(97)00003-x

Google Scholar

[8] F. Höniger, E. Fretwurst,  G. Lindström,  G. Kramberger,  I. Pintilie,  R. Röder, DLTS measurements of radiation induced defects in epitaxial and MCz silicon detectors, Nucl. Instr. Meth. Phys. Res. A 583 (2007) 104-108.

DOI: 10.1016/j.nima.2007.08.202

Google Scholar

[9] P. M. Mooney, L. J. Cheng, M. Süli, J. D. Gerson, and J. W. Corbett, Defect energy levels in boron-doped silicon irradiated with 1-MeV electrons, Phys. Rev. B 15 (1977) 3836-3843.

DOI: 10.1103/physrevb.15.3836

Google Scholar

[10] I. Pintilie, E. Fretwurst, G. Lindström, and J. Stahl, Second-order generation of point defects in gamma-irradiatedfloat-zone silicon, an explanation for type inversion, Appl. Phys. Lett. 82 (2003) 2169-2171.

DOI: 10.1063/1.1564869

Google Scholar