Similarity of Atomic Configurations of Thermally Stable Positron-Sensitive Complexes Produced with 0.9-MeV Electrons and 15-MeV Protons in n–FZSi:P Crystals

Article Preview

Abstract:

We observed for the first time the thermally stable point positron-sensitive center of a vacancy type in n–FZSi (P) material irradiated at RT by ~ 0.9-MeV electrons. The center that emerges after isochronal annealing at Tanneal.≈ 260 – 280 oC is found to be similar to the vacancy-group-V-atom complex revealed in the same Si material irradiated by 15-MeV protons; the detecting of the centers by the positron trapping is finalized at Tanneal.≥ 520 oC. The annihilation gamma-quanta to be emitted from the positron trap gives rise to a characteristic positron lifetime τ2 (I2 ~ 38–19 %) ≤ 276 – 294 ps which is somewhat longer than the one predicted for unrelaxed single vacancy τV.≈ 254 – 261 ps. Our data suggested a configuration of the complex VopPVop, wherein the atom of phosphorus is tied to a split open vacancy volume 2Vop. It is argued that Vop volume detected by the positron trapping may be formed by extended semi-vacancy, Vs-ext , or by the relaxed inwards vacancy, Vinw , thus resulting in a distorted Vs-extPVs-ext or VinwPVinw configurations.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

296-301

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.V. Emtsev, A.M. Ivanov, V.V. Kozlovski, A.A. Lebedev, G.A. Oganesyan, N.B. Strokan, G. Wagner, Similarities and distinctions of defect production by fast electron and proton irradiation: moderatly doped silicon and silicon carbide of n-type, Fiz. Tekh. Poluprov. 46 (2012).

DOI: 10.1134/s1063782612040069

Google Scholar

[2] N. Yu. Arutyunov, M. Elsayed, R. Krause-Rehberg, V.V. Emtsev, G.A. Oganesyan, V.V. Kozlovski, Positron annihilation on defects in silicon irradiated with 15 MeV protons, J. Phys.: Condens. Matter 25 (2013) 035801–035828.

DOI: 10.1088/0953-8984/25/3/035801

Google Scholar

[3] N. Yu. Arutyunov, M. Elsayed, R. Krause-Rehberg, V.V. Emtsev, G.A. Oganesyan, V.V. Kozlovski, Positron probing of vacancy volume of thermally stable deep donors produced with 15 MeV protons in n–FZ–Si: P crystals, Sol. St. Phenom. Vols. 205-206 (2013).

DOI: 10.4028/www.scientific.net/ssp.205-206.317

Google Scholar

[4] G.D. Watkins, J.W. Corbett, Defects in irradiated silicon: electron paramagnetic resonance and electron-nuclear double resonance of the Si-E center, Phys. Rev. 134 (1964) A1359-1377.

DOI: 10.1103/physrev.134.a1359

Google Scholar

[5] J. Kansy, Microcomputer program for analysis of positron annihilation lifetime spectra, Nucl. Instrum. Methods Phys. Res., Sect. A 374 (1996) 235–244.

DOI: 10.1016/0168-9002(96)00075-7

Google Scholar

[6] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors, first ed., Springer-Verlag, Berlin, (1999).

DOI: 10.1007/978-3-662-03893-2_3

Google Scholar

[7] N. Yu. Arutyunov, V.V. Emtsev, R. Krause-Rehberg, C. Kessler, M. Elsayed, G.A. Oganesyan, V.V. Kozlovski, Cascade phonon-assisted trapping of positrons by divacancies in n–FZ–Si(P) single crystals irradiated with 15 MeV protons, AIP Conf. Proc. 1583 (2014).

DOI: 10.1063/1.4865601

Google Scholar

[8] L. Palmetshofer, J. Reisinger, Defect levels in H+, D+, and He+ bombarded silicon, J. Appl. Phys. 72 (1992) 2167–2173.

DOI: 10.1063/1.351606

Google Scholar

[9] T. Wada, K. Yasuda, S. Ikuta, M. Takeda, H. Masuda, Complex defects introduced into Si by high-energy electron irradiation: production rates of defects in n–Si, J. Appl. Phys. 48 (1977) 2145–2152.

DOI: 10.1063/1.324032

Google Scholar

[10] M. Hakala, M.J. Puska, R.M. Nieminen, Momentum distributions of electron-positron pairs annihilating at vacancy clusters in Si, Phys. Rev. B 57 (1998) 7621–7627.

DOI: 10.1103/physrevb.57.7621

Google Scholar

[11] G. Davies, S. Hayama, L. Murin, R. Krause-Rehberg, V. Bondarenko, A. Sengupta, C. Davia, A. Karpenko, Radiation damage in silicon exposed to high-energy protons, Phys. Rev. B 73 (2006) 165202–16210.

DOI: 10.1103/physrevb.73.165202

Google Scholar

[12] T.E.M. Staab, A. Sieck, M. Haugk, M.J. Puska, Th. Frauenheim, H.S. Leipner, Stability of large vacancy clusters in silicon, Phys. Rev. B 65 (2002) 115210–115221.

DOI: 10.1103/physrevb.65.115210

Google Scholar

[13] T.E.M. Staab, M. Haugk, A. Sieck, T. Frauenheim, H. S. Leipner, Magic number vacancy aggregates in Si and GaAs structure and positron lifetime studies, Physica B 273–274 (1999) 501–504.

DOI: 10.1016/s0921-4526(99)00537-2

Google Scholar

[14] T.E.M. Staab, A. Sieck, M. Haugk, M.J. Puska, Th. Frauenheim, H.S. Leipner, Stability of large vacancy clusters in silicon, Phys. Rev. B 65 (2002) 115210–115221.

DOI: 10.1103/physrevb.65.115210

Google Scholar

[15] J. Kuriplach, A. L. Morales, C. Dauwe, D. Segers, M. Sob, Vacancies and vacancy-oxygen complexes in silicon: positron annihilation with core electrons, Phys. Rev. B 58 (1998) 10475–1483.

DOI: 10.1103/physrevb.58.10475

Google Scholar

[16] D. V. Makhov, L. J. Lewis, Stable fourfold configurations for small vacancy clusters insilicon from ab initio calculations, Phys. Rev. Lett. 92 (2004) 255504–255508.

DOI: 10.1103/physrevlett.92.255504

Google Scholar

[17] V.A. Telezhskin, K.B. Tolpygo, Electron structure of the donor-vacancy complex in the diamond-like crystals, Fiz. Tverd. Tela 15 (1973) 1084–1089. [Sov. Phys. Solid. State 15 (1973) 740].

Google Scholar

[18] VV Voronkov, R Falster, Fast and slow vacancies in silicon, Sol. St. Phenom. Vols. 205-206 (2013) 157–162.

DOI: 10.4028/www.scientific.net/ssp.205-206.157

Google Scholar