Boron-Related Defects in Low Temperature Irradiated Silicon

Article Preview

Abstract:

The FTIR absorption studies of boron-doped silicon irradiated at 80 K by 5 MeV electrons have shown the recombination-enhanced migration of the interstitial boron by the Bourgoin-Corbett mechanism. The interaction of diffusing atoms of Bi with one another and with atoms of interstitial oxygen was revealed. For as-irradiated samples we observed the appearance of three LVMs at 739.4, 759.6, and 780.9 cm-1, which are attributed to BiBi complex, and the LVM at 923.5 cm-1, which are identified as BiOi complex.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

285-289

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.D. Watkins, Defects in irradiated silicon: EPR and electron-nuclear double resonance of interstitial boron, Phys. Rev. B 12 (1975) 5824-5839.

DOI: 10.1103/physrevb.12.5824

Google Scholar

[2] P.M. Mooney, L.J. Cheng, M. Süli, J.D. Gerson, J.W. Corbett, Defect energy levels in boron-doped silicon irradiated with 1-MeV electrons, Phys. Rev. B 15 (1977) 3836-3843.

DOI: 10.1103/physrevb.15.3836

Google Scholar

[3] A.R. Bean, S.R. Morrison, R.C. Newmann, R.S. Smith, Electron irradiation damage in silicon containing high concentrations of boron, J. Phys. C: Solid State Phys. 5 (1972) 379-400.

DOI: 10.1088/0022-3719/5/4/005

Google Scholar

[4] J.R. Troxell, G.D. Watkins, Interstitial boron in silicon: A negative-U system, Phys. Rev. B 22 (1980) 921-931.

Google Scholar

[5] R.D. Harris, J.L. Newton, G.D. Watkins, Negative-U defect: Interstitial boron in silicon, Phys. Rev. B 36 (1987) 1094-1104.

DOI: 10.1103/physrevb.36.1094

Google Scholar

[6] A.K. Tipping, R.C. Newman, An infrared study of the production, diffusion and complexing of interstitial boron in electron-irradiated silicon, Semicond. Sci. Technol. 2 (1987) 389-398.

DOI: 10.1088/0268-1242/2/7/001

Google Scholar

[7] K. Laithwaite, R.C. Newman, D.H.J. Totterdell, Interstitial defects involving boron in irradiated silicon, J. Phys. C: Solid State Phys. 8 (1975) 236-242.

DOI: 10.1088/0022-3719/8/2/016

Google Scholar

[8] K. Thonke, J. Weber, J. Wagner, R. Sauer, Origin of the 1. 080 eV (I2) photoluminescence line in irradiated silicon, Physica B 116 (1982) 252-257.

DOI: 10.1016/0378-4363(83)90255-3

Google Scholar

[9] P.J. Drevinsky, C.E. Caefer, S.P. Tobin, J.C. Mikkelsen Jr., L.C. Kimerling, Influence of oxygen and boron on defect production in irradiated silicon, Mat. Res. Soc. Symp. Proc. 104 (1988) 167-172.

DOI: 10.1557/proc-104-167

Google Scholar

[10] L.C. Kimerling, M.T. Asom, J.L. Benton, P.J. Drevinsky, C.E. Caefer, Interstitial defect reactions in silicon, Materials Science Forum 38-41 (1989) 141-150.

DOI: 10.4028/www.scientific.net/msf.38-41.141

Google Scholar

[11] J. Adey, J.P. Goss, R. Jones, P.R. Briddon, Interstitial boron defects in Si, Physica B 340-342 (2003) 505-508.

DOI: 10.1016/j.physb.2003.09.147

Google Scholar

[12] J. Adey, J.P. Goss, R. Jones, P.R. Briddon, Identification of boron clusters and boron-interstitial clusters in silicon, Phys. Rev. B 67 (2003) 245325 (1-5).

DOI: 10.1103/physrevb.67.245325

Google Scholar

[13] A. Carvalho, R. Jones, J. Coutinho, P.R. Briddon, Ab initio calculation of the local vibrational modes of the interstitial boron-interstitial oxygen defect in Si, J. Phys.: Condens. Matter. 17 (2005) L155-L159.

DOI: 10.1088/0953-8984/17/17/l01

Google Scholar

[14] P. Becker, H. -J. Pohl, H. Riemann, N. Abrosimov, Enrichment of silicon for a better kilogram, Phys. Status Solidi A 207 (2010) 49–66.

DOI: 10.1002/pssa.200925148

Google Scholar