Comparison of the Chemical Passivation of GaAs, In0.53Ga0.47As, and InSb with 1-Eicosanethiol

Article Preview

Abstract:

Self-assembled 1-eicosanethiolate layers were deposited on the oxide-free (100) crystal planes of GaAs, In0.53Ga0.47As, and InSb to protect the surfaces. The layer prevented re-oxidation in air for 30 min on GaAs but only 8 min on In0.53Ga0.47As based on the O 1s x-ray photoelectron spectroscopy state. The layer protected InSb from reoxidation for only 4 min based on the O Auger state. Well-ordered monolayers formed on GaAs and In0.53Ga0.47As based on transmission Fourier transform infrared (FTIR) spectroscopy. A partially ordered layer was formed on InSb based on attenuated total reflection FTIR. The increased reoxidation rate of InGaAs and InSb is due to the larger lattice parameter of these surfaces and their In content, which forms weaker bonds to S, Ga, and Sb compared to Ga bonding to As and S.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 255)

Pages:

55-60

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. del Alamo. Nature 479 (2011), p.317.

Google Scholar

[2] C. J. Sandroff, M. S. Hegde, L. A. Farrow, C. C. Chang, and J. P. Harbison: Appl. Phys. Lett. 54 (1989), p.362.

Google Scholar

[3] Y. Nannichi, J. Fan, H. Oigawa, and A. Koma: Jpn. J. Appl. Phys. 27 (1988) p.2367.

Google Scholar

[4] C. McGuiness, A. Shaporenko, M. Zharnikov, A. Walker, and D. Allara: J. Phys. Chem. C 111 (2007) p.4226.

Google Scholar

[5] B. Brennan, M. Milojevic, C. Hinkle, F. Aguirre-Tostado, G. Hughes, and R. Wallace: Appl. Surf. Sci. 257 (2011), p.4082.

DOI: 10.1016/j.apsusc.2010.11.179

Google Scholar

[6] S. McDonnell, H. Dong, J. M. Hawkins, B. Brennan, M. Milojevic, F. S. Aguirre-Tostado, D. M. Zhernokletov, C. L. Hinkle, J. Kim, and R. M. Wallace: Appl. Phys. Lett. 100 (2012), pp.141606-1.

DOI: 10.1063/1.3700863

Google Scholar

[7] H. A. Budz, M. C. Biesinger, and R. R. LaPierre: J. Vac. Sci. Technol. B, 27 (2009), p.637.

Google Scholar

[8] H. Oh, S. A. B. Suleiman, and S. Lee: J. Electrochem. Soc., 157 (2010), p. H1051.

Google Scholar

[9] T. V. Lvova, M. S. Dunaevskii, M. V. Lebedev, A. L. Shakhmin, I. V. Sedova, and S. V. Ivanov: Semiconductors, 47 (2013), pp.721-727.

DOI: 10.1134/s106378261305014x

Google Scholar

[10] D. M. Zhernokletov, H. Dong, B. Brennan, J. Kim, and R.M. Wallace: J. Vac. Sci. Technol. B, 30 (2012), p. 04E103.

Google Scholar

[11] P. D. C. King, T. D. Veal, M. J. Lowe, and C. F. McConville: J. Appl. Phys. B, 104 (2008), p.083709.

Google Scholar

[12] G. Nesher, A. Vilan, H. Cohen, D. Cahen, F. Amy, C. Chan, J. Hwang, and A. Kahn, J. Phys. Chem. B 110 (2006), 14363.

DOI: 10.1021/jp062181i

Google Scholar

[13] Y. Contreras and A. J. Muscat, App. Surf. Sci. 370 (2016), pp.67-75.

Google Scholar