Morpho-Structural and Chemical Composition Properties of PVP-Capped ZnO Nanoparticles Synthesized via a Simple-Polyol Method

Abstract:

Article Preview

In this work, we report on the processing of PVP-capped ZnO nanoparticles employing a simple-polyol method, varying only the molar concentration (0.01 and 0.1 M) of Zn(CH3COO)2•2H2O used as zinc precursor. Synthesis is performed using ethylene glycol (EG) as solvent and polyvinylpyrrolidone (PVP) as capping agent. Physico-chemical characteristics of the as-synthesized particles were studied by X-Ray Diffraction (XRD), Fourier Transform Infrared (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). SEM micrographs revealed formation of quasi-spherical secondary particles formed by aggregation of primary nanosized subunits crystallized from 0.01 M precursor. When precursor with a higher concentration is used, no aggregation occurs and only tiny primary particles in the nanosized range are obtained. XRD confirmed that ZnO nanoparticles have the hexagonal wurtzite-type structure. SEM, EDS and FT-IR showed that applied route produced ZnO nanoparticles with functionalized surface. Presented results imply clear dependence of the particles morphology and size from precursor concentration which could be used for rapid, continuous, single-step preparation of PVP-capped ZnO nanoparticles tailored in accordance to application demands.

Info:

Periodical:

Solid State Phenomena (Volume 286)

Edited by:

Luz Stella Gomez-Villalba

Pages:

15-22

Citation:

G. Flores-Carrasco et al., "Morpho-Structural and Chemical Composition Properties of PVP-Capped ZnO Nanoparticles Synthesized via a Simple-Polyol Method", Solid State Phenomena, Vol. 286, pp. 15-22, 2019

Online since:

January 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] Ü. Özgür, Y. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98(4) (2005) 041301-041403.

DOI: https://doi.org/10.1063/1.1992666

[2] L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO- nanostructures, defects, and devices, Mater. Today 10(6) (2007) 40-48.

DOI: https://doi.org/10.1016/s1369-7021(07)70078-0

[3] P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature, Solid State Commun. 103 (1997) 459-463.

DOI: https://doi.org/10.1016/s0038-1098(97)00216-0

[4] B. Han, X. Liu, X. Xing, N. Chen, X. Xiao, S. Liu, Y. Wang, A high response butanol gas sensor based on ZnO hollow spheres, Sens. Actuators B Chem. 237 (2016) 423-430.

DOI: https://doi.org/10.1016/j.snb.2016.06.117

[5] K. Soo-Whan, L. Sunghun, S.S. Ahmad Nauman, L. Young Haeng, J. Myung-Hwa, Ferromagnetism in undoped ZnO nanostructures synthesized by solution plasma process, Curr. Appl. Phys. 17(2) (2017) 181-185.

DOI: https://doi.org/10.1016/j.cap.2016.11.016

[6] E.J. Canto-Aguilar, M. Rodríguez-Pérez, R. García-Rodríguez, F.I. Lizama-Tzec, A.T. De Denko, F.E. Osterloh, G. Oskam, ZnO-based dye-sensitized solar cells: Effects of redox couple and dye aggregation, Electrochim. Acta 258 (2017) 396-404.

DOI: https://doi.org/10.1016/j.electacta.2017.11.075

[7] S.S. Bhat, A. Qurashi, F.A. Khanday, ZnO nanostructures based biosensors for cancer and infectious disease applications: Perspectives, prospects and promises, TrAC Trends Anal. Chem. 86 (2017) 1-13.

DOI: https://doi.org/10.1016/j.trac.2016.10.001

[8] G. Flores, J. Carrillo, J.A. Luna, R. Martínez, A. Sierra-Fernandez, O. Milosevic, M. E. Rabanal, Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP, Adv. Powder Technol. 25 (2014) 1435-1441.

DOI: https://doi.org/10.1016/j.apt.2014.02.004

[9] I.M. El-Nahhal, A.A. Elmanama, N.M. El Ashgar, N. Amara, M. Selmane, M.M. Chehimi, Stabilization of nano-structured ZnO particles onto the surface of cotton fibers using different surfactants and their antimicrobial activity, Ultrason. Sonochem. 38 (2017) 478-487.

DOI: https://doi.org/10.1016/j.ultsonch.2017.03.050

[10] B. Eadi Sunil, K. Sungjin, S. Jung-Hoon, H. Soon-Ku, Effects of growth pressure on morphology of ZnO nanostructures by chemical vapor transport, Chem. Phys. Lett. 658 (2016) 182-187.

DOI: https://doi.org/10.1016/j.cplett.2016.06.050

[11] A. Zawadzka, P. Płóciennik, Y. El Kouari, H. Bougharraf, B. Sahraoui, Linear and nonlinear optical properties of ZnO thin films deposited by pulsed laser deposition, J. Lumin. 0169 Part B (2016) 483-491.

DOI: https://doi.org/10.1016/j.jlumin.2015.04.020

[12] R.S. Gonçalves, P. Barrozo, F. Cunha, Optical and structural properties of ZnO thin films grown by magnetron sputtering: Effect of the radio frequency power, Thin Solid Films 616 (2016) 265-269.

DOI: https://doi.org/10.1016/j.tsf.2016.08.040

[13] J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Synthesis of ZnO Nanostructures Using Sol-Gel Method, Procedia Chemistry 19 ( 2016 ) 211-216.

DOI: https://doi.org/10.1016/j.proche.2016.03.095

[14] L. Chuan-Pei, L. Chun-Ting, F. Miao-Syuan, L. Sie-Rong, H. Yi-June, C. Ling-Yu, T. Chuan-Ming, S. Shih-Sheng, L. Jiang-Jen, H. Kuo-Chuan, Microemulsion-assisted Zinc Oxide Synthesis: Morphology Control and Its Applications in Photoanodes of Dye-Sensitized Solar Cells, Electrochim. Acta 210 (2016) 483-491.

DOI: https://doi.org/10.1016/j.electacta.2016.05.174

[15] T. Demes, C. Ternon, D. Riassetto, V. Stambouli, M. Langlet, Comprehensive study of hydrothermally grown ZnO nanowires, J. Mater. Sci. 51 (2016) 10652-10661.

DOI: https://doi.org/10.1007/s10853-016-0287-8

[16] R. Hong, T. Pan, J. Qian, H. Li, Synthesis and surface modification of ZnO nanoparticles, Chem. Eng. J. 119 (2006) 71-81.

[17] C. Feldmann, Polyol-mediated synthesis of nanoscale functional materials, Adv. Funct. Mater. 13 (2003) 101-107.

DOI: https://doi.org/10.1002/adfm.200390014

[18] B.W. Chieng, Y.Y. Loo, Synthesis of ZnO nanoparticles by modified polyol method, Mater. Lett. 73 (2012) 78-82.

DOI: https://doi.org/10.1016/j.matlet.2012.01.004

[19] H.M. Ismail, A thermoanalytic study of metal acetylacetonates, J. Anal. Appl. Pyrolysis 21 (1991) 315-326.

[20] J. Zhang, H. Liu, Z. Wang, N. Ming, Z. Li, A.S. Biris, Polyvinylpyrrolidone-directed crystallization of ZnO with tunable morphology and bandgap, Adv. Funct. Mater. 17 (2007) 3897-3905.

DOI: https://doi.org/10.1002/adfm.200700734

[21] K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis, Dalton Trans. 44 (2015)17883-17905.

DOI: https://doi.org/10.1039/c5dt02964c