Synthesizing Alkaline Earth Metal Hydroxides Nanoparticles through an Innovative, Single-Step and Eco-Friendly Method

Article Preview

Abstract:

The objective of this paper is to introduce a patented and eco-friendly method to synthesize aqueous suspension of all types of alkaline-earth metal hydroxides nanoparticles (NPs). This method is based on an ion exchange process; the exchange takes place at ambient temperature/pressure, starts from cheap or renewable reagents and, in one single step, results in the creation of the crystalline desired nanoparticles in only a few minutes. In terms of structural and morphological features, the synthesized nanoparticles are characterized by means of XRD-Rietveld refinement, FTIR, and TEM. In particular, we obtained pure and crystalline magnesium and calcium hydroxide suspensions, showing the typical brucite crystal structure with a hexagonal lamellar morphology and dimensions generally <100 nm. With respect to the strontium and barium hydroxide suspensions, we observed different kinds of hydroxides (either anhydrous and hydrate forms), characterized by orthorhombic or monoclinic crystal lattices with rod-like nanostructured morphologies. Despite the different morphologies, all synthesized nanoparticles appear constituted by a superimposition of primary nanoparticles, of dimensions ranging from a few to 15 nm, correlated to the increase in the atomic number of the alkaline earth metal.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 286)

Pages:

3-14

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Duan, Y. Huang, R. Agarwal and C.M. Lieber, Single-nanowire electrically driven lasers, Nature 421 (2003) 241-245.

DOI: 10.1038/nature01353

Google Scholar

[2] H. Zhang, D.R. Yang, D.S. Li, X.Y. Ma, S.Z. Li, D.L. Que, Controllable Growth of ZnO Microcrystals by a Capping-Molecule-Assisted Hydrothermal Process, Crystal Growth & Design 5(2) (2005) 547–550.

DOI: 10.1021/cg049727f

Google Scholar

[3] E. Reverchon, R. Adamia, Nanomaterials and Supercritical Fluids, Journal of Supercritical Fluids 37(1) (2006) 1-22.

DOI: 10.1016/j.supflu.2005.08.003

Google Scholar

[4] C. Liang, T. Sasaki, Y. Shimizu, N. Koshizaki, Pulsed-laser ablation of Mg in liquids: surfactant-directing nanoparticle assembly for magnesium hydroxide nanostructures, Chem Phys Lett 389 (2004) 58–63.

DOI: 10.1016/j.cplett.2004.03.056

Google Scholar

[5] B. Li, Y. Zhang, Y. Zhao, Z. Wu, Z. Zhang, A novel method for preparing surface-modified Mg(OH)2 nanocrystallines, Mater Sci Eng A 452(453) (2007) 302–305.

DOI: 10.1016/j.msea.2006.10.126

Google Scholar

[6] B. Salvadori, L. Dei, Synthesis of Ca(OH)2 Nanoparticles from Diol, Langmuir 17 (2001) 2371-2374.

DOI: 10.1021/la0015967

Google Scholar

[7] G. Poggi, N. Toccafondi, D. Chelazzi, et al. Calcium hydroxide nanoparticles from solvothermal reaction for the deacidification of degraded waterlogged wood, J. Colloid and Interface Science 473 (2016)1-8.

DOI: 10.1016/j.jcis.2016.03.038

Google Scholar

[8] A. Roy, J. Bhattacharya, Synthesis of Ca(OH)2 nanoparticles by wet chemical method, Micro & Nano Letters 5 (2010) 131-134.

DOI: 10.1049/mnl.2010.0020

Google Scholar

[9] C. Rodriguez-Navarro, A. Suzuki, E. Ruiz-Agudo, Alcohol dispersions of calcium hydroxide nanoparticles for stone conservation, Langmuir 29 (2013)11457-11470.

DOI: 10.1021/la4017728

Google Scholar

[10] R. Volpe, G. Taglieri, V. Daniele, G. Del Re, A process for the synthesis of Ca(OH)2 nanoparticles by means of ionic exchange resin, European Patent EP2880101 (2016).

Google Scholar

[11] G. Taglieri, V. Daniele, L. Macera, C. Mondelli, Nano Ca(OH)2 synthesis using a cost-effective and innovative method: Reactivity study, J Am Ceram Soc. 100 (2017) 5766–5778.

DOI: 10.1111/jace.15112

Google Scholar

[12] G. Taglieri, B. Felice, V. Daniele, R. Volpe, C. Mondelli, Analysis of the carbonatation process of nanosized Ca(OH)2 particles synthesized by exchange ion process, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 230 (2016).

DOI: 10.1177/1740349914537616

Google Scholar

[13] G. Taglieri, B. Felice, V. Daniele, F. Ferrante, Mg(OH)2 nanoparticles produced at room temperature by an innovative, facile, and scalable synthesis route, J Nanopart Res 17 (2015) 411-424.

DOI: 10.1007/s11051-015-3212-1

Google Scholar

[14] J.W. Mullin, Crystallisation, 4th Edition, Butterworth Heinemann, Oxford (UK), (2001).

Google Scholar

[15] R. Giorgi, M. Ambrosi, N. Toccafondi, P. Baglioni, Nanoparticles for Cultural Heritage Conservation: Calcium and Barium Hydroxide Nanoparticles for Wall Painting Consolidation, Chemistry - A European Journal 16(31) (2010) 9374-9382.

DOI: 10.1002/chem.201001443

Google Scholar

[16] K.M. Saoud, I. Ibala, D. El Ladki, O. Ezzeldeen, S. Saeed, Microwave Assisted Preparation of Calcium Hydroxide and Barium Hydroxide Nanoparticles and Their Application for Conservation of Cultural Heritage, in: Ioannides M., Magnenat-Thalmann N., Fink E., Žarnić R., Yen AY., Quak E. (eds) Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. EuroMed 2014. Lecture Notes in Computer Science, vol 8740. Springer, Cham. (2014).

DOI: 10.1007/978-3-319-13695-0_33

Google Scholar

[17] R.H. Pramila Devamani, M. Alagar, Synthesis and Characterization Barium Hydroxide Nanoparticles, Asian Academic Research Journal of Multidisciplinary 23(1) (2014) 60-75.

Google Scholar

[18] M.A. Alavi, A. Morsali, Syntheses and characterization of Sr(OH)2 and SrCO3 nanostructures by ultrasonic method, Ultrasonics Sonochemistry 17 (2010) 132–138.

DOI: 10.1016/j.ultsonch.2009.05.004

Google Scholar

[19] E. Ciliberto, G.G. Condorelli, S. La Delfa, E. Viscuso, Nanoparticles of Sr(OH)2: synthesis in homogeneous phase at low temperature and application for cultural heritage artefacts, Appl. Phys. A 92 (2008) 137–141.

DOI: 10.1007/s00339-008-4464-8

Google Scholar

[20] M.M. Rahmana, M.A.M. Salleha, U. Rashida, A. Ahsana, M.M. Hossain, C.S. Rae, Production of slow release crystal fertilizer from wastewaters through struvite crystallization-a review, Arab J Chem 7(1) (2014) 139–155.

DOI: 10.1016/j.arabjc.2013.10.007

Google Scholar

[21] M. Sain, S.H. Park, F. Suhara, S. Law, Flame retardant and mechanical properties of natural fibre–PP compositese containing magnesium hydroxide, Polym Degrad Stab 83 (2004) 363–367.

DOI: 10.1016/s0141-3910(03)00280-5

Google Scholar

[22] S. Gryglewicz, Alkaline and alkaline-earth compounds as alcoholysis catalysts for ester oils synthesis, Applied Catalysis A:General 192 (2000) 23-28.

DOI: 10.1016/s0926-860x(99)00337-3

Google Scholar

[23] C. Dong, J. Cairney, Q. Sun, O. Lee Maddan, G. He, Y. Deng, Investigation of Mg(OH)2 nanoparticles as an antibacterial agent, J Nanopart Res 12 (2010) 2101–2109.

DOI: 10.1007/s11051-009-9769-9

Google Scholar

[24] L. Kumari, W.Z. Li, et al., Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO, Ceramics International 35 (2009) 3355–3364.

DOI: 10.1016/j.ceramint.2009.05.035

Google Scholar

[25] CO2 capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study, The Journal of Chemical Physics 133 (2010) 074508.

DOI: 10.1063/1.3473043

Google Scholar

[26] G. Arzamendi, E. Arguiñarena, et al., Alkaline and alkaline-earth compounds as catalysts for the methanolysis of sunflower oil, Catalysis Today 133-135 (2008) 305-313.

DOI: 10.1016/j.cattod.2007.11.029

Google Scholar

[27] E.J. Schofield, R. Sarangi, et al., Strontium carbonate nanoparticles for the surface treatment of problematic sulfur and iron in waterlogged archaeological wood, J. of Cultural Heritage 18 (2016) 306–312.

DOI: 10.1016/j.culher.2015.07.013

Google Scholar

[28] R. Giorgi, M., et al., Nanoparticles of Mg(OH)2: synthesis and application to paper conservation, Langmuir 21 (2005) 8495–8501.

DOI: 10.1021/la050564m

Google Scholar

[29] A. Sierra-Fernandez, L.S. Gomez-Villalba, et al., New nanomaterials for applications in conservation and restoration of stony materials: A review, Materiales de Construcción 67 (325) (2017) e107.

DOI: 10.3989/mc.2017.07616

Google Scholar

[30] G. Taglieri, V. Daniele, G. Rosatelli, S. Sfarra, M.C. Mascolo, C. Mondelli, Eco-compatible protective treatments on an Italian historic mortar (XIV century), J. of Cultural Heritage 25 (2017) 135-141.

DOI: 10.1016/j.culher.2016.12.008

Google Scholar

[31] G. Taglieri, V. Daniele, C. Mondelli, MgO nanoparticles synthesized starting from an innovative one-step process, J Am Ceram Soc.101 (4) (2018) 1780–1789.

DOI: 10.1111/jace.15328

Google Scholar

[32] D.L. Bish, J.E. Post, Modern Powder Diffraction. Washington, DC:Mineralogical Society of America; (1989).

Google Scholar

[33] V. Daniele, G. Taglieri, Nanolime suspensions applied on natural lithotypes: the influence of concentration and residual water content on carbonation process and on treatment effectiveness, J Cul Her. 11 (2010) 102-106.

DOI: 10.1016/j.culher.2009.04.001

Google Scholar

[34] S. Junaid S. Qazi, Adrian R. Rennie, et al., Use of wide-angle X-ray diffraction to measure shape and size of dispersed colloidal particles, Journal of Colloid and Interface Science 338 (2009) 105–110.

DOI: 10.1016/j.jcis.2009.06.006

Google Scholar

[35] C. Rodriguez-Navarro, E. Ruiz-Agudo, M. Ortega-Huertas, et al., Nanostructure and Colloidal Behavior of Ca(OH)2: implications for the Conservation of Cultural Heritage, Langmuir 21 (2005) 10948-10957.

DOI: 10.1021/la051338f

Google Scholar

[36] S. Gunasekaran, G. Anbalagan, S. Pandi, Raman and infrared spectra of carbonates of calcite structure, J Raman Spectrosc. 37 (2006) 892-899.

DOI: 10.1002/jrs.1518

Google Scholar

[37] P. Colomban, C. Tran, et al., Aqua oxyhydroxycarbonate second phases at the surface of Ba/Sr-based proton conducting perovskites: A source of confusion in the understanding of proton conduction, Journal of Raman Spectroscopy 44(2) (2013) 312-320.

DOI: 10.1002/jrs.4179

Google Scholar