Growth Mechanism and Optical Properties of Nano and Microstructures of ZnO Obtained by Thermal Oxidation of Zinc Powders at Atmospheric Pressure

Article Preview

Abstract:

ZnO Nano and microstructures were obtained by thermal oxidation using Zn powders as source. To achieve those structures, the Zn powders were annealed at 650°C and 750°C under oxygen environment and atmospheric pressure. SEM results show that these experimental conditions promote the formation of hollow spherical microstructures with nanowires and nano-swords in each sphere. As was observed, the nanostructures start growing from the bottom surface of the spheres unlike those that were reported recently. The EDS results clearly show that those hollow spheres in the deep part make a compound with Zn and the top surface is mainly composed of ZnO. CL emission spectra show a main green emission that belongs to the sphere’s bottom surface; this emission is correlated to the existing defects that are presented. These results could allow the prediction of a possible growth mechanism under specific conditions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 286)

Pages:

33-39

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties and Applications, Imperial College Press, London, (2004).

Google Scholar

[2] C. X. Zhao, Y. F. Li, J. Zhou, L. Y. Li, S. Z. Deng, N. S. Xu, and Jun Chen. Large-Scale Synthesis of Bicrystalline ZnO Nanowire Arrays by Thermal Oxidation of Zinc Film: Growth Mechanism and High-Performance Field Emission. Cryst. Growth Des. 13 (2013).

DOI: 10.1021/cg400318f

Google Scholar

[3] S.A. Colorado, H.A. Colorado, Manufacturing of zinc oxide structures by thermal oxidation processes as scalable methods towards inexpensive electric generators, Ceramics International 43 (2017) 15846-15855.

DOI: 10.1016/j.ceramint.2017.08.156

Google Scholar

[4] C.L. Zhang, J.J. Li, S.Y. Li, Photocatalytic degradation of pefloxacin in water by modified nano-zinc oxide, Materials Letters, 206 (2017) 146-149.

DOI: 10.1016/j.matlet.2017.06.109

Google Scholar

[5] X. Wang, C. J. Summers and Z. L. Wang. Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. Nano Lett. 4 (3) (2004) 423-426.

DOI: 10.1021/nl035102c

Google Scholar

[6] Y. Ortega, P. Fernández and J. Piqueras. Growth and luminescence of oriented nanoplate arrays in tin doped ZnO. Nanotechnology 18 (2007) 115606.

DOI: 10.1088/0957-4484/18/11/115606

Google Scholar

[7] J. Grym, P. Fernández, J. Piqueras. Growth and spatially resolved luminescence of low dimensional structures in sintered ZnO. Nanotechnology 16 (2005) 931-935.

DOI: 10.1088/0957-4484/16/6/051

Google Scholar

[8] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, Hannes Kind, Eicke Weber, Richard Russo, Peidong Yang. Room-Temperature Ultraviolet Nanowire Nanolasers. Science 292 (2001)1897-1899.

DOI: 10.1126/science.1060367

Google Scholar

[9] H. Yan, R. He, J. Pham, P. Yang. Morphogenesis of One-Dimensional ZnO Nano- and Microcrystals Adv. Matter 15 (5) (2003) 402-405.

DOI: 10.1002/adma.200390091

Google Scholar

[10] A. El Hichou, M. Addou, A. Bougrine, R. Dounia, J. Ebothé, M. Troyon, M. Amrani. Cathodoluminescence properties of undoped and Al-doped ZnO thin films deposited on glass substrate by spray pyrolysis. Materials Chemistry and Physics 83 (2004).

DOI: 10.1016/j.matchemphys.2003.08.015

Google Scholar

[11] Y. Fang, X. Wen, S. Yang, Q. Pang, L. Ding, J. Wang and W. Ge. Hydrothermal Synthesis and Optical Properties of ZnO Nanostructured Films Directly Grown from/on Zinc Substrates. Journal of Sol-gel Science and Technology 36 (2005) 227-234.

DOI: 10.1007/s10971-005-3563-7

Google Scholar

[12] W. I. Park, G. C. Yi, M. Kim, S. J. Pennycook. ZnO Nanoneedles Grown Vertically on Si Substrates by Non-Catalytic Vapor-Phase Epitaxy. Adv. Mater. 14 (24) (2002) 1841-1843.

DOI: 10.1002/adma.200290015

Google Scholar

[13] H. Y. Dang, J. Wang and S. S. Fan. The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres Nanotechnology 14 (2003) 738-741.

DOI: 10.1088/0957-4484/14/7/308

Google Scholar

[14] A. Umar, S.H. Kim, Y.H. Im, Y.B. Hahn. Structural and optical properties of ZnO micro-spheres and cages by oxidation of metallic Zn powder. Superlattices Microstruct. 39 (2006) 238-246.

DOI: 10.1016/j.spmi.2005.08.046

Google Scholar

[15] R. Nakamura, J.-G. Lee, D. Tokozakura, H. Mori, H. Nakajima. Formation of hollow ZnO through low-temperature oxidation of Zn nanoparticles. Materials Letters 61 (2007) 1060-1063.

DOI: 10.1016/j.matlet.2006.06.039

Google Scholar

[16] L. Yuan, C. Wang, R. Cai, Y. Wang, G. Zhou. Temperature-dependent growth mechanism and microstructure of ZnO nanostructures grown from the thermal oxidation of zinc. J. Cryst. Growth 390 (2014) 101-108.

DOI: 10.1016/j.jcrysgro.2013.12.036

Google Scholar

[17] Y. Du, F. Zeng. Annealing effects on the cathodoluminescence properties of individual ZnO nanowire. Materials Letters 65 (2011) 2238-2240.

DOI: 10.1016/j.matlet.2011.04.006

Google Scholar

[18] A. Gonzalez, M. Herrera-Saldivar, J. Valenzuela. CL study of yellow emission in ZnO nanostructures annealed in Ar and O2 atmospheres. Superlattices and Microstructures 45 (2009) 421-428.

DOI: 10.1016/j.spmi.2008.10.036

Google Scholar