Photoluminescence of Hybrid Structure Base in ZnO@SiO2 Core-Shell Nanoparticles inside Porous Silicon

Abstract:

Article Preview

In this work, core-shell ZnO@SiO2 nanoparticles (NPs) were infiltrated into a macro/meso-porous silicon (PS) structure, to study its luminescent properties. The core-shell ZnO@SiO2 NPs were obtained by colloidal synthesis. The core-shell ZnO@SiO2 NP was 5 nm in diameter. The macro/meso-PS structure was made in two steps: we obtained the macroporous silicon (macro-PS) layer fist and the mesoporous silicon (meso-PS) layer second. This process was conducted using different electrolyte solutions, and the change of electrolyte led to a decrease in the special charge region over the wall macro-PS layer; this allowed the building of the meso-PS layers on the walls and the bottom of the macro-PS layer. The SEM results show the cross-section of the macro/meso-PS structure with and without core-shell ZnO@SiO2 NPs. These SEM images show that the core-shell ZnO@SiO2 NPs that infiltrated into macro/meso-PS structure were more efficiently bonded over all the porous walls. The core-shell ZnO@SiO2 PL interacted with the macro/meso-PS structure, modifying its PL intensity and controlling a shift toward a lower wavelength.

Info:

Periodical:

Solid State Phenomena (Volume 286)

Edited by:

Luz Stella Gomez-Villalba

Pages:

40-48

Citation:

X. Leon et al., "Photoluminescence of Hybrid Structure Base in ZnO@SiO2 Core-Shell Nanoparticles inside Porous Silicon", Solid State Phenomena, Vol. 286, pp. 40-48, 2019

Online since:

January 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] R.B. Wehrspohn, Ordered porous nanostructures and applications, Nanostructure Science and Technology, Series editor: David J. Lockwood, (2005).

[2] A.P. Alivisatos, Perspectives on the Physical Chemistry of Semiconductor Nanocrystals, Journal of Physical Chemistry, 100 (1996) 13226 – 13239.

DOI: https://doi.org/10.1021/jp9535506

[3] A.E. Raevskaya, Y.V. Panasiuk, O. L. Stroyuk, S.Y. Kuchmiy, V.M. Dzhagan, A.G. Milekhin, N.A. Yeryukov, L.A. Sveshnikova, E.E. Rodyakina, V.F. Plyusnin, D.R.T. Zahn, Spectral and luminescent properties of ZnO-SiO2 core-Shell nanoparticles with size-selected ZnO core, RSC Adv. 4 (2014) 63393 – 63401.

DOI: https://doi.org/10.1039/c4ra07959k

[4] V. Coleman, C. Jagadish, Basic Properties and Applications of ZnO in Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications, ed. C. Jagadish and S. Pearton, Elsevier, Amsterdam, (2006).

DOI: https://doi.org/10.1016/b978-008044722-3/50001-4

[5] Y. Yang, W.N. Li, Y.S. Luo, H.M. Xiao, S.Y. Fu, Y.W. Mai, Novel ultraviolet-opaque, visible-transparent and light-emitting ZnO-QD/silicone composites with tunable luminescence colors, Polymer, 51 (2010) 2755 – 2762.

DOI: https://doi.org/10.1016/j.polymer.2010.03.056

[6] T. Karacali, K. Cicek, Strong white light emission from a processed porous silicon and its photoluminescence mechanism. Journal of Luminescence 131 (2011) 2100 – 2105.

DOI: https://doi.org/10.1016/j.jlumin.2011.05.031

[7] H. Föll, M. Christophersen, J. Carstensen, G. Hasse, Review: Formation and application of porous silicon, Materials Science and Engineering R 280 (2002) 1 – 49.

[8] S.D. Alvarez, A.M. Derfus, M.P. Schwartz, S.N. Bhatia, M.J. Sailor, The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors, Biomaterials, 30 (2009) 26 – 34.

DOI: https://doi.org/10.1016/j.biomaterials.2008.09.005

[9] D. Sun, M. Wong, L. Sun, Y. Li, N. Miyatake, H.J. Sue, Purification and stabilization of colloidal ZnO nanoparticles in methanol. J Sol-Gel Sci Technol 43 (2007) 237 – 243.

DOI: https://doi.org/10.1007/s10971-007-1569-z

[10] R. Pérez-Cuapio, Dissertation, Sintesís y caracterización de nanopartículas de ZnO para obtención de nanocompuestos (ZnO-SiO2) empleando una matriz de SiO2 por el método de so-gel. Doctorate in semiconductor devices, Instituto de ciencias de la B.U.A.P., (2015).

DOI: https://doi.org/10.24254/cnib.15.42

[11] A. Aboulaich, C.M. Tilmaciu, C. Merlin, C. Mercier, H. Guilloteau, G. Medjahdi, R. Schneider, Physicochemical properties and cellular toxicity of (poly)aminoalkoxysilanes-functionalized ZnO, Nanotechnology, 23 (2012) 335101 – 335110.

DOI: https://doi.org/10.1088/0957-4484/23/33/335101

[12] L. Pavesi, M. Ceschini, F. Rossi, Photoluminescence of porous silicon, Journal of Luminescence, 57 (1993) 131 – 135.

DOI: https://doi.org/10.1016/0022-2313(93)90120-c

[13] O. Bisi, S. Ossicini, L. Pavesi, Porous silicon: a quantum sponge structure for silicon based optoelectronic, Surf. Sci. Rep. 38 (2000) 1 – 126.

DOI: https://doi.org/10.1016/s0167-5729(99)00012-6

[14] L.T. Canham, Silicon quantum wire array fabrication by electrochemical dissolution of wafers. Appl. Phys. Lett. 57 (1990) 1046 – 1048.

DOI: https://doi.org/10.1063/1.103561

[15] A.G. Cullis, L. T. Canham, P.D.J. Calcott, The structural and luminescence properties of porous silicon, Journal of Applied Physics, 82 (1997) 909 – 965.

DOI: https://doi.org/10.1063/1.366536

[16] M. Ray, N.R. Bandyopadhyay, U. Ghanta, R.F. Klie, A.K. Pramanick, S. Das, S.K. Ray, S.M. Hossain, Temperature dependent photoluminescence from porous silicon nanostructures: Quantum confinement and oxide related transitions, Journal of Applied Physics, 110 (2011) 094309-1 – 094309-8.

DOI: https://doi.org/10.1063/1.3657771

[17] N.E. Korsunskaya, T.R. Stara, L. Yu. Khomenkova, K.V. Svezhentsova, N.N. Melnichenko, F.F. Sizov, The Nature of Emission of Porous Silicon Produced by Chemical Etching, Semiconductors 44 (2010) 79 – 83.

DOI: https://doi.org/10.1134/s1063782610010136

[18] J. Salonen, V.P. Lehto, E. Laine, The room temperature oxidation of porous silicon, Applied Surface Science 120 (1997) 191 – 198..

DOI: https://doi.org/10.1016/s0169-4332(97)00385-1

[19] M. Ray, A. Jan, U. Ghanta, N.R. Bandyopadhyay, S.M. Hossain, Photoluminescence From Oxidized Macroporous Silicon: Nanoripples and Strained Silicon Nanostructures, IEEE Transactions on Device and Materials Reliability, 13 (2013) 87 – 92.

DOI: https://doi.org/10.1109/tdmr.2012.2214781

[20] P. Kumar, Effect of Silicon Crystal Size on Photoluminescence Appearance in Porous Silicon, International Scholarly Research Network Nanotechnology, 2011 (2011), 1 – 6.

DOI: https://doi.org/10.5402/2011/163168

[21] M. Christophersen, J. Carstensen, K. Voigt, H. Föll, Organic and aqueous electrolytes used for etching macro and mesoporous silicon. Phys. Stat. Sol. (a) 197, 1 (2003), 34 – 38.

DOI: https://doi.org/10.1002/pssa.200306464

[22] X. Cheng, Z. Feng, G. Luo. Effect of potential steps on porous silicon formation. Electrochimica Acta, 48 (2003) 497 – 501.

DOI: https://doi.org/10.1016/s0013-4686(02)00716-8

[23] E.A. Meulenkamp, Synthesis and Growth of ZnO Nanoparticles, J. Phys. Chem. B, 102 (1998) 5566 – 5572.

[24] H.P. Klug, L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials, Wiley InterScience, New York, (1974).

[25] G. Kenanakis, M. Androulidaki, E. Koudoumas, C. Savvakis, N. Katsarakis, Photoluminescence of ZnO nanostructures grown by the aqueous chemical growth technique. Superlattices and Microstructures 42 (2007) 473 - 478.

DOI: https://doi.org/10.1016/j.spmi.2007.04.037

[26] A. van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, Identification of the transition responsible for the visible emission in ZnO using quantum size effects, J. Lumin. 90 (2000) 123-128.

DOI: https://doi.org/10.1016/s0022-2313(99)00599-2