Structural, Morphological, Optical, and Electrical Characterization of Fluorine Doped Tin Oxide (FTO) Thin Films Synthesized by PSP

Abstract:

Article Preview

This paper reports a study of Fluorine-doped Tin Oxide (FTO) thin films deposited by the Pneumatic Spray Pyrolysis (PSP) technique. The films were deposited on glass substrates at 450 °C with a ~125 nm thickness, using an F/Sn ratio of 0, 0.2, 0.35, 0.5, 0.65 and 0.85, respectively. The samples were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), UV-visible Spectroscopy and Hall Effect techniques, respectively. XRD results revealed that the FTO thin films were polycrystalline with a tetragonal rutile-type structure and had preferential orientations along (110) planes. SEM studies showed that FTO thin film morphology was totally affected by an increased F/Sn ratio. The calculated grain mean sizes were 10-35 nm. Optical transmittance spectra of the films showed a high transparency of approximately 80-90 % in the visible region. The optical gap of FTO thin films was in a 3.70-4.07 eV range. Electrical and optical properties of these films were studied as a function of the F/Sn ratio. Therefore, the optimal FTO (F/Sn = 0.5) films revealed a maximum value of the figure of merit approximately 8.05 × 10-3-1) at λ = 400 nm. The high-conducting and transparent-elaborating FTO thin films may have several promising applications due to its multifunctional properties.

Info:

Periodical:

Solid State Phenomena (Volume 286)

Edited by:

Luz Stella Gomez-Villalba

Pages:

64-71

Citation:

R. Ramírez-Amador et al., "Structural, Morphological, Optical, and Electrical Characterization of Fluorine Doped Tin Oxide (FTO) Thin Films Synthesized by PSP", Solid State Phenomena, Vol. 286, pp. 64-71, 2019

Online since:

January 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] K. L. Chopra, S. Major, D. K. Pandya, Transparent conductors–A status review, Thin solid films, 102(1) (1983) 1-46.

DOI: https://doi.org/10.1016/0040-6090(83)90256-0

[2] S. Shanthi, C. Subramanian, P. Ramasamy, Investigations on the optical properties of undoped, fluorine doped and antimony doped tin oxide films, Crystal Research and Technology, 34(8) (1999) 1037-1046.

DOI: https://doi.org/10.1002/(sici)1521-4079(199909)34:8<1037::aid-crat1037>3.0.co;2-j

[3] T. Minami, New n-Type Transparent Conducting Oxides, Mrs Bulletin, 25(8) (2000) 38-44.

[4] Z. Y. Banyamin, P. J. Kelly, G. West, J. Boardman, Electrical and optical properties of fluorine doped tin oxide thin films prepared by magnetron sputtering, Coatings, 4(4) (2014) 732-746.

DOI: https://doi.org/10.3390/coatings4040732

[5] H. Kim, R. C. Y. Auyeung, A. Piqué, Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition, Thin Solid Films, 516(15) (2008) 5052-5056.

DOI: https://doi.org/10.1016/j.tsf.2007.11.079

[6] N. Najafi, S. M. Rozati, Structural and Electrical Properties of SnO2: F Thin Films Prepared by Chemical Vapor Deposition Method, Acta Physica Polonica: A, 131(2) (2017) 222-225.

DOI: https://doi.org/10.12693/aphyspola.131.222

[7] X. H. Shi, K. J. Xu, Properties of fluorine-doped tin oxide films prepared by an improved sol-gel process, Materials Science in Semiconductor Processing, 58 (2017) 1-7.

DOI: https://doi.org/10.1016/j.mssp.2016.09.038

[8] M. Hanif, A. Sasha, W. K. Lau, F. Mohamad, W. Zaki, W. Suhaimizan & M. K. Ahmad, Preparation of Nanostructured Fluorine Doped Tin Oxide (FTO) by Hydrothermal Method, In Applied Mechanics and Materials 773 (2015) 632-636. Trans Tech Publications.

DOI: https://doi.org/10.4028/www.scientific.net/amm.773-774.632

[9] G. Flores-Carrasco, S. Alcántara-Iniesta, A. Sierra-Fernández, L. S. Gomez-Villalba, M. E. Rabanal, O. Milosevic, Propiedades estructurales, ópticas y eléctricas de películas de SnO2 y SnO2: F depositadas por rocío pirolítico ultrasónico, Superficies y Vacío, 27(4) (2014).

[10] O. Malik, F. J. de la Hidalga-Wade, R. R. Amador, Fluorine-doped tin oxide films with a high figure of merit fabricated by spray pyrolysis, J. Mater. Res., 30(13) (2015) 2040-(2045).

DOI: https://doi.org/10.1557/jmr.2015.138

[11] S. Shanthi, C. Subramanian, P. Ramasamy, Preparation and properties of sprayed undoped and fluorine doped tin oxide films, Materials Science and Engineering: B, 57(2) (1999)127-134.

DOI: https://doi.org/10.1016/s0921-5107(98)00314-6

[12] J. B. Mooney, S. B. Radding, Spray pyrolysis processing, Annual review of materials science, 12(1) (1982) 81-101.

[13] K. A. Amézaga-Madrid, P. Esquivel-Pereyra, O. Antúnez-Flores, W., Pizá Ruiz, P., & M. Miki-Yoshida, Synthesis and microstructural characterization of SnO2: F thin films deposited by AACVD. Materials Research, 19 (2016) 97-102.

DOI: https://doi.org/10.1590/1980-5373-mr-2016-0350

[14] K. C. Icli, B. C. Kocaoglu, & M. Ozenbas, Comparative study on deposition of fluorine-doped tin dioxide thin films by conventional and ultrasonic spray pyrolysis methods for dye-sensitized solar modules. Journal of Photonics for Energy, 8(1) (2018).

DOI: https://doi.org/10.1117/1.jpe.8.015501

[15] M. A. Aouaj, R. Diaz, A. Belayachi, F. Rueda, &, M. Abd-Lefdil, Comparative study of ITO and FTO thin films grown by spray pyrolysis. Materials Research Bulletin, 44(7) (2009) 1458-1461.

DOI: https://doi.org/10.1016/j.materresbull.2009.02.019

[16] A. V. Moholkar, S. M. Pawar, K. Y. Rajpure, C. H. Bhosale, & J. H. Kim, Effect of fluorine doping on highly transparent conductive spray deposited nanocrystalline tin oxide thin films. Applied Surface Science, 255(23) (2009) 9358-9364.

DOI: https://doi.org/10.1016/j.apsusc.2009.07.035

[17] D. Tatar, B. Düzgün, The relationship between the doping levels and some physical properties of SnO 2: F thin films spray-deposited on optical glass. Pramana, 79(1) (2012) 137-150.

DOI: https://doi.org/10.1007/s12043-012-0288-3

[18] E. Ching-Prado, A. Watson, H. Miranda, Optical and electrical properties of fluorine doped tin oxide thin film, Journal of Materials Science: Materials in Electronics 1(2018)1-8.

DOI: https://doi.org/10.1007/s10854-018-8795-8

[19] G. Gordillo, L. C. Moreno, W. De la Cruz, P. Teheran, Preparation and characterization of SnO2 thin films deposited by spray pyrolysis from SnCl2 and SnCl4 precursors. Thin Solid Films, 252(1) (1994) 61-66.

DOI: https://doi.org/10.1016/0040-6090(94)90826-5

[20] P. Karthick, D. Vijayanarayanan, S. Suja, M. Sridharan, K. Jeyadheepan, Opto-electronic properties of fluorine doped tin oxide films deposited by nebulized spray pyrolysis method. Asian J Appl Sci, 8 (2015) 259-268.

DOI: https://doi.org/10.3923/ajaps.2015.259.268

[21] V. Bilgin, I. Akyuz, E. Ketenci, S. Kose, F. Atay, Electrical, structural and surface properties of fluorine doped tin oxide films. Applied Surface Science, 256(22) (2010) 6586-6591.

DOI: https://doi.org/10.1016/j.apsusc.2010.04.052

[22] M. Oshima, K. Yoshino, Electron scattering mechanism of FTO films grown by spray pyrolysis method. Journal of electronic materials, 39(6) (2010) 819-822.

DOI: https://doi.org/10.1007/s11664-010-1225-1

[23] Q. P. Tran, J. S. Fang, T. S. Chin, Properties of fluorine-doped SnO2 thin films by a green sol–gel method. Materials Science in Semiconductor Processing, 40 (2015) 664-669.

DOI: https://doi.org/10.1016/j.mssp.2015.07.047

[24] A. Benhaoua, A. Rahal, B. Benhaoua, M. Jlassi, Effect of fluorine doping on the structural, optical and electrical properties of SnO2 thin films prepared by spray ultrasonic. Superlattices and Microstructures, 70 (2014) 61-69.

DOI: https://doi.org/10.1016/j.spmi.2014.02.005

[25] M. Fantini, I. Torriani, The compositional and structural properties of sprayed SnO2: F thin films. Thin solid films, 138(2) (1986) 255-265.

DOI: https://doi.org/10.1016/0040-6090(86)90398-6

[26] B. Thangaraju, Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor. Thin solid films, 402(1-2) (2002) 71-78.

DOI: https://doi.org/10.1016/s0040-6090(01)01667-4

[27] A. A. Yadav, E. U. Masumdar, A. V. Moholkar, M. Neumann-Spallart, K. Y. Rajpure, C. H. Bhosale, Electrical, structural and optical properties of SnO2: F thin films: Effect of the substrate temperature. Journal of Alloys and Compounds, 488(1) (2009).

DOI: https://doi.org/10.1016/j.jallcom.2009.08.130

[28] E. Elangovan, K. Ramamurthi, Studies on micro-structural and electrical properties of spray-deposited fluorine-doped tin oxide thin films from low-cost precursor, Thin solid films, 476(2) (2005) 231-236.

DOI: https://doi.org/10.1016/j.tsf.2004.09.022

[29] N. Memarian, S. M. Rozati, E. Elamurugu, E. Fortunato, Characterization of SnO2: F thin films deposited by an economic spray pyrolysis technique. physica status solidi (c), 7(9) (2010) 2277-2281.

DOI: https://doi.org/10.1002/pssc.200983738

[30] A. N. Banerjee, S. Kundoo, P. Saha, K. K. Chattopadhyay, Synthesis and characterization of nano-crystalline fluorine-doped tin oxide thin films by sol-gel method, Journal of Sol-Gel Science and Technology, 28(1) (2003) 105-110.

DOI: https://doi.org/10.1023/a:1025697322395

[31] J. Tauc, The optical properties of solids, Edit. J. Tauc, Published by Academic Press, New York: 1966, p.277.

[32] R. Summit, J. A. Marley, N. F. Borrelli, The ultraviolet absorption edge of stannic oxide SnO2, J. Phys. Chem. Solids, 25 (1964) 1465-1469.

DOI: https://doi.org/10.1016/0022-3697(64)90063-0

[33] E. Burstein, Anomalous optical absorption limit in InSb, Phys. Rev., 93 (1954) 632-633.

DOI: https://doi.org/10.1103/physrev.93.632

[34] T. S. Moss, The interpretation of the properties of indium antimonide, Proc. Phys. Soc. London, B76 (1954) 775-782.

[35] D. Tatar, G. Turgut, B. Düzgün, Effect of substrate temperature on the crystal growth orientation and some physical properties of SnO2: F thin films deposited by spray pyrolysis technique, Rom. Journ. Phys. 58(1-2) (2013) 143-158.

[36] A. Rahal, S. Benramache, B. Benhaoua, The effect of the film thickness and doping content of SnO2: F thin films prepared by the ultrasonic spray method, J. Semiconduct., 34 (9)(2013)1-5.

DOI: https://doi.org/10.1088/1674-4926/34/9/093003

[37] G. Haacke, New figure of merit for transparent conductors, J. Appl. Phys., 47 (1976) 4086-4089.