Synthesis and Characterization of Multi-Angular Branched ZnO Microstructures and Peculiar Nanopushpins Obtained by Thermal Treatment from Compacted ZnS Powder

Abstract:

Article Preview

Multi-angular branched ZnO microstructures with rods-shaped tips and nanopushpins with hexagonal cap on top have been synthesized by a simple thermal treatment process of compacted ZnS powder used as starting material and substrate. The structures have been grown at different temperatures (800, 900 and 1000 °C) for 60 min, in a constant nitrogen environment at atmospheric pressure via a catalyst-free process. XRD results of the as-grown products from ZnS powder show a significant reduction in the cubic zincblende phase to the hexagonal wurtzite phase with the increase of treatment temperature, as compared to the bulk value. Post-anneal analyses indicated that the transformation of morphologies of the as-grown structures also depends strongly on the treatment temperature. The proposed method represents an easy and economical way to grow complex structures of ZnO, with a relatively short time, furthermore, without the neediness of use an external substrate to grow. These new and interesting nanostructures have potential in applications such as optoelectronics.

Info:

Periodical:

Solid State Phenomena (Volume 286)

Edited by:

Luz Stella Gomez-Villalba

Pages:

23-30

Citation:

J.R. Mora et al., "Synthesis and Characterization of Multi-Angular Branched ZnO Microstructures and Peculiar Nanopushpins Obtained by Thermal Treatment from Compacted ZnS Powder", Solid State Phenomena, Vol. 286, pp. 23-30, 2019

Online since:

January 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature, Solid State Commun. 103 (1997) 459-463.

DOI: https://doi.org/10.1016/s0038-1098(97)00216-0

[2] M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Room temperature ultraviolet nanowire nanolasers, Science 292 (2001) 1897-1899.

DOI: https://doi.org/10.1002/chin.200140254

[3] W.Z. Wang , B.Q. Zeng , J. Yang , B. Poudel , J.Y. Huang , M.J. Naughton , Z.F. Ren, Aligned ultralong ZnO nanobelts and their enhanced field emission, Adv. Mater. 18 (2006) 3275-3278.

DOI: https://doi.org/10.1002/adma.200601274

[4] J. Zhou, Y. D. Gu, Y.F. Hu, W.J. Mai, P.H. Yeh, G. Bao, A.K. Sood, D.L. Polla, Z.L. Wang, Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization, Appl. Phys. Lett. 94 (2009).

DOI: https://doi.org/10.1063/1.3133358

[5] E.J. Canto-Aguilar, M. Rodríguez-Pérez, R. García-Rodríguez, F.I. Lizama-Tzec, A.T. De Denko, F.E. Osterloh, G. Oskam, ZnO-based dye-sensitized solar cells: Effects of redox couple and dye aggregation, Electrochim. Acta 258 (2017) 396-404.

DOI: https://doi.org/10.1016/j.electacta.2017.11.075

[6] R.S. Yang, Y. Qin, L.M. Dai, Z.L. Wang, Power generation with laterally packaged piezoelectric fine wires, Nat. Nanotechnol. 4 (2009) 34-39.

[7] Z. L. Wang, Towards self-powered nanosystems: From nanogenerators to nanopiezotronics, Adv. Funct. Mater. 18 (2008) 3553-3567.

DOI: https://doi.org/10.1002/adfm.200800541

[8] G. Flores, J. Carrillo, J.A. Luna, R. Martínez, A. Sierra-Fernandez, O. Milosevic, M. E. Rabanal, Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP, Adv. Powder Technol. 25 (2014).

DOI: https://doi.org/10.1016/j.apt.2014.02.004

[9] Q. Yuan, S. Hein, R.D. Misra, New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response, Acta Biomater 6 (2010) 2732-2739.

DOI: https://doi.org/10.1016/j.actbio.2010.01.025

[10] L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO- nanostructures, defects, and devices, Mater. Today 10 (2007) 40-48.

DOI: https://doi.org/10.1016/s1369-7021(07)70078-0

[11] Y. Sun, G. Fuge, M. Ashfold, Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods, Chem. Phys. Lett. 396 (2004) 21-26.

DOI: https://doi.org/10.1016/j.cplett.2004.07.110

[12] Y. Heo, V. Varadarajan, M. Kaufman, K. Kim, D.P. Norton, F. Ren, P.H. Fleming, Site-specific growth of ZnO nanorods using catalysis driven molecular beam epitaxy, Appl. Phys. Lett. 81 (2012) 3046-3048.

DOI: https://doi.org/10.1063/1.1512829

[13] J.Q. Hu, Q. Li, X.M. Meng, C.S. Lee, S.T. Lee, Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes, Chem. Mater. 15 (2003) 305-308.

DOI: https://doi.org/10.1021/cm020649y

[14] J.L. Yang, S.J. An, W.I. Park, G.-C. Yi, W. Choi, Photocatalysis Using ZnO Thin Films and Nanoneedles Grown by Metal-Organic Chemical Vapor Deposition, Adv. Mater. 16 (2004) 1661-1664.

DOI: https://doi.org/10.1002/adma.200306673

[15] B. Liu, H.C. Zeng, Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm, J. Am. Chem. Soc. 125 (2003) 4430-4431.

DOI: https://doi.org/10.1021/ja0299452

[16] L. Vayssieres, Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Adv. Mater. 15 (2003) 464-466.

DOI: https://doi.org/10.1002/adma.200390108

[17] D. A. Magdas, A. Cremades, J. Piqueras, Growth and luminescence of elongated In2O3 micro- and nanostructures in thermally treated InN, J. Appl. Phys. Lett. 88 (2006) 113107.

DOI: https://doi.org/10.1063/1.2185833

[18] J. Grym, P. Fernández, J. Piqueras, Growth and spatially resolved luminescence of low dimensional structures in sintered ZnO, J. Nanotechnology 16 (2005) 931-935.

DOI: https://doi.org/10.1088/0957-4484/16/6/051

[19] D. Schuletze, U. Steinike, J. Kussin, U. Kretzschmar, Thermal Oxidation of ZnS Modifications Sphalerite and Wurtzite, Cryst. Res. Techno 30 (1995) 553-558.

DOI: https://doi.org/10.1002/crat.2170300422

[20] S.B. Qadri, E.F. Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Gray, B.R. Ratna, Size-induced transition-temperature reduction in nanoparticles of ZnS, Phys. Rev. B 60 (1999) 9191-9193.

DOI: https://doi.org/10.1103/physrevb.60.9191

[21] K. Mahmood, M. Asghar, N. Amin, A. Ali, Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing, J. Semicond. 36 (2015) 033001.

DOI: https://doi.org/10.1088/1674-4926/36/3/033001

[22] W.Q. Peng, G.W. Cong, S.C. Qu, Z.G. Wang, Synthesis of shuttle-like ZnO nanostructures from precursor ZnS nanoparticles, Nanotechnology 16 (2005) 1469-1473.

DOI: https://doi.org/10.1088/0957-4484/16/9/008

[23] J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren., ZnO Nanobridges and Nanonails, Nano Letters 3 (2003) 325-238.