Transport Phenomena during Liquid Si-Induced 4H-SiC Surface Structuring in a Sandwich Configuration

Article Preview

Abstract:

4H-SiC/Si(liq)/4H-SiC stacks were treated at 1550-1600°C under H2 in a RF-heated cold-wall reactor in order to generate macrosteps-structuring of the 4°off SiC(0001) wafers. Using 400 μm thick liquid Si, the observed important matter transport from the edges to the center of the same wafer was attributed to RF-induced convection rolls inside the thick liquid Si. When the liquid thickness was reduced down to 30 μm, the matter transport followed this time the vertical thermal gradient like in the case of liquid phase epitaxy. The dissolution rate of the bottom (hotter) wafer was found to increase from 1.7 μm/h at 1550°C to 3.3 μm/h at 1600°C. The use of H2 gas was found essential to the system since it does not generate gas trapping (unlike Ar) and it participates to the creation of the vertical thermal gradient.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 342)

Pages:

73-78

Citation:

Online since:

May 2023

Export:

Share:

Citation:

* - Corresponding Author

[1] J. Woerle, B. C. Johnson, C. Bongiorno, K. Yamasue, G. Ferro, D. Dutta, T. A. Jung, H. Sigg, Y. Cho, U. Grossner, and M. Camarda, Phys. Rev. Mater., 3, (2019) 84602

Google Scholar

[2] I. D. P. Fiorenza, F. Iucolano, G. Nicotra, C. Bongiorno, F. A. L. Magna, F. Giannazzo, M. Saggio, C. Spinella, F. Roccaforte, Nanotechnology, 29, (2018) p.39

DOI: 10.1088/1361-6528/aad129

Google Scholar

[3] M. Camarda, J. Woerle, V. Souliere, G. Ferro, H. Sigg, U. Grossner, and J. Gobrecht, Mater. Sci. Forum, 897, (2017) p.107

DOI: 10.4028/www.scientific.net/msf.897.107

Google Scholar

[4] Y. Jousseaume, F. Cauwet, G. Ferro, Mater. Sci. Forum, 1062 (2022) p.8

Google Scholar

[5] X. Xing, T. Yoshikawa, O. Budenkova, D. Chaussende, J. Mater. Sci. 57 (2) (2022) p.972

Google Scholar

[6] F. Mercier, J. M. Dedulle, D. Chaussende, M. Pons, J. Cryst. Growth, 312, 2, (2010) p.155

Google Scholar

[7] U. Burr, U. Müller, J. Fluid Mech., 453, (2002) p.345

Google Scholar

[8] Y. Tasaka, T. Yanagisawa, K. Fujita, T. Miyagoshi, A. Sakuraba, J. Fluid Mech., 911 (2021) p.1

Google Scholar

[9] R. I. Scace, G. A. Slack, J. Chem. Phys., 30, (1959), p.1551

Google Scholar

[10] K. Yanaba, M. Akasaka, M. Takeuchi, M. Watanabe, T. Narushima, Y. Iguchi, Materials Transactions, 38, 11 (1997) p.990.

DOI: 10.2320/matertrans1989.38.990

Google Scholar

[11] K. Alassaad, V. Soulière, F. Cauwet, D. Carole, G. Ferro, Mater. Sci. Forum, 821–823, (2015), p.121

DOI: 10.4028/www.scientific.net/msf.821-823.121

Google Scholar

[12] C. Hallin, F. Owman, P. Martenssor, A. Ellison, A. Konstantinov, O. Kordina, E. Janzèn, J. Cryst. Growth, 181, (197), p.241

Google Scholar

[13] L.A. Marasina, V. V. Malinovsky, I. G. Pichugin, P. Prentky, Crvstal Res. & Technol. 17 (3) (1982) p.365

DOI: 10.1002/crat.2170170320

Google Scholar