Atomic Level Chemical and Structural Properties of Silicon Surface and Initial Stages of Oxidation

Article Preview

Abstract:

This work aims to summarize previous results reported in literature on atomic level properties of the wet chemically treated hydrogen-terminated silicon surfaces and of the Si oxidation, in comparison to a model system of ultraclean Si surfaces prepared in ultrahigh vacuum (UHV) conditions. A literature review shows that a proper wet chemical treatment of Si(111) provides an atomically smooth, high-quality surface, similar to the model template obtained in UHV conditions after high temperature heating. However, it seems that Si(111) is an exception among semiconductor surfaces concerning the effects of wet chemistry. Although the insulator films grown by the atomic layer deposition (ALD) have replaced the thermal oxide of SiO2 in many applications, still an intermediate SiO2 layer is formed and often grown intentionally beneath the ALD film to improve the device performance. However, a detailed atomic structure of the SiO2/Si interface is still debatable, which might be due to differences in atomic level smoothness of the used Si(100) starting surfaces.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 346)

Pages:

49-56

Citation:

Online since:

August 2023

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. J. Chabal, K. Raghavachari, New ordered structure for the H-saturated Si(100) surface: The (3×1) phase, Phys. Rev. Lett. 54 (1985) 1055.

DOI: 10.1103/physrevlett.54.1055

Google Scholar

[2] K. Takayanagi, Y. Tanishiro, S. Takahashi, M. Takahashi, Structure analysis of Si(111)-7×7 reconstructed surface by transmission electron diffraction, Surf. Sci. 164 (1985) 367.

DOI: 10.1016/0039-6028(85)90753-8

Google Scholar

[3] R. I. G. Uhrberg, G. V. Hansson, U. O. Karlsson, J. M. Nicholls, P. E. S. Persson, S. A. Flodström, R. Engelhardt, E.-E. Koch, Bulk and surface electronic structures of Si(111)2×1 and Si(111)7×7 studied by angle-resolved photoelectron spectroscopy, Phys. Rev. B 31 (1985) 3795.

DOI: 10.1103/physrevb.31.3795

Google Scholar

[4] E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, T. B. Bright, Unusually low surface-recombination velocity on silicon and germanium surfaces, Phys. Rev. Lett. 57 (1986) 249.

DOI: 10.1103/physrevlett.57.249

Google Scholar

[5] A. Ishizaka, Y. Shiraki, Low temperature surface cleaning of silicon and its application to silicon MBE, J. Electrochem. Soc. 133 (1986) 666.

DOI: 10.1149/1.2108651

Google Scholar

[6] R. J. Hamers, R. M. Tromp, J. E. Demuth, Scanning tunneling microscopy of Si(001), Phys. Rev. B 34 (1986) 5343.

DOI: 10.1103/physrevb.34.5343

Google Scholar

[7] T. Takahagi, I. Nagai, A. Ishitani, H. Kuroda, Nagasawa, The formation of hydrogen passivated silicon single-crystal surfaces using ultraviolet cleaning and HF etching, J. Appl. Phys. 64 (1988) 3516.

DOI: 10.1063/1.341489

Google Scholar

[8] W. Kern, The evolution of silicon wafer cleaning technology, J. Electrochem. Soc. 137 (1990) 1887.

Google Scholar

[9] R. A. Wolkow, Direct observation of an increase in buckled dimers on Si(001) at low temperature, Phys. Rev. Lett. 68 (1992) 2636.

DOI: 10.1103/physrevlett.68.2636

Google Scholar

[10] T. Engel, The interaction of molecular and atomic oxygen with Si(100) and Si(111), Surf. Sci. Rep. 18 (1993) 93.

Google Scholar

[11] E. Pehlke, M. Scheffler, Evidence for site-sensitive screening of core holes at the Si and Ge (001) surface, Phys. Rev. Lett. 71 (1993) 2338.

DOI: 10.1103/physrevlett.71.2338

Google Scholar

[12] M. Meuris, P. W. Mertens, A. Opdebeeck, H. F. Schmidt, M. Depas, G. Vereecke, The IMEC clean: a new concept for particle and metal removal on Si surfaces, Sol. State Technol. 38 (1995) 109.

Google Scholar

[13] Y. Morita, H. Tokumoto, Ideal hydrogen termination of Si(001) surface by wetchemical preparation, Appl. Phys. Lett. 67 (1995) 2654.

DOI: 10.1063/1.114326

Google Scholar

[14] Proceedings of the fourth international symposium on cleaning technology in semiconductor device manufacturing. Edited by R. E. Novak, J. Ruzyllo, C. M. Appel, T. Hattori, M. M. Heyns, Electrochemical Society Proceedings 95-20 (1996).

Google Scholar

[15] K. Endo, K. Arima, T. Kataoka, Y. Oshikane, H. Inoue, Y. Mori, Atomic structures of hydrogen-terminated Si(001) surfaces after wet cleaning by scanning tunneling microscopy, Appl. Phys. Lett. 73 (1998) 1853.

DOI: 10.1063/1.122304

Google Scholar

[16] K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, M. Katayama, Hydrogen interaction with clean and modied silicon surfaces, Surf. Sci. Rep. 35 (1999) 1.

DOI: 10.1016/s0167-5729(99)00005-9

Google Scholar

[17] T. Takahagi, S. Shingubara, H. Sakaue, Wet preparation of defect-free hydrogen-terminated silicon wafer surface and its characterization in atomic-scale. 5th International Symposium on Ultra Clean Processing of Silicon Surfaces (UCPSS 2000), Sol. State Phenom. 76-77 (2001) 105.

DOI: 10.4028/www.scientific.net/ssp.76-77.105

Google Scholar

[18] H. Sakaue, S. Fujiwara, S. Shingubara, T. Takahagi, Atomic-scale defect control on hydrogen-terminated silicon surface at wafer scale, Appl. Phys. Lett. 78 (2001) 309.

DOI: 10.1063/1.1339993

Google Scholar

[19] F. De Smedt, S. De Gendt, M. Claes, M.M. Heyns, H. Vankerckhoven, C. Vinckier, The increasing importance of the use of ozone in the microelectronics industry, Ozone Sci. Engineer. 24 (2002) 379.

DOI: 10.1080/01919510208901628

Google Scholar

[20] H. Sakaue, Y. Taniguchi, Y. Okamura, S. Shingubara T. Takahagi, Wet treatment for preparing atomically smooth Si(100) wafer surface, Appl. Surf. Sci. 234 (2004) 439.

DOI: 10.1016/j.apsusc.2004.05.052

Google Scholar

[21] B. Onsia, M. Caymax, T. Conard, S. De Gendt, F. De Smedt, A. Delabie, C. Gottschalk, M. Green, M. Heyns, S. Lin, P. Mertens, W. Tsai, C. Vinckier, On the application of a thin ozone based wet chemical oxide as an interface for ALD high-k deposition, Diff. Defect Data Pt.B: Sol. State Phenom. (2005).

DOI: 10.4028/www.scientific.net/ssp.103-104.19

Google Scholar

[22] G.-H. Lu, M. Huang, M. Cuma, F. Liu, Relative stability of Si surfaces: A first-principles study, Surf. Sci. 588 (2005) 61.

DOI: 10.1016/j.susc.2005.05.028

Google Scholar

[23] K. Arima, J. Katoh, S. Horie, K. Endo, T. Ono, S. Sugawa, H. Akahori, A. Teramoto, T. Ohmi, Hydrogen termination of Si(110) surfaces upon wet cleaning revealed by highly resolved scanning tunneling microscopy, J. Appl. Phys. 98 (2005) 103525.

DOI: 10.1063/1.2136214

Google Scholar

[24] H. Kato, T. Taoka, S. Nishikata, G. Sazaki, T. Yamada, R. Czajka, A Wawro, K. Nakajima, A. Kasuya, S. Suto, Preparation of an ultraclean and atomically controlled hydrogen-terminated Si(111)-(1x1) surface revealed by high resolution electron energy loss spectroscopy, atomic force microscopy, and scanning tunneling microscopy: Aqueous NH4F etching process of Si(111), Jpn. J. Appl. Phys. 46 (2007) 5701.

DOI: 10.1143/jjap.46.5701

Google Scholar

[25] T. Yamasaki, K. Kato, T. Uda, T. Yamamoto, T. Ohno, First-principles theory of Si(110)-(16×2) surface reconstruction for unveiling origin of pentagonal scanning tunneling microscopy images, Appl. Phys. Express 9 (2016) 035501.

DOI: 10.7567/apex.9.035501

Google Scholar

[26] A. Ourmazd, D. W. Taylor, J. A. Rentschler, J. Bevk, Si®SiO2 transformation: Interfacial structure and mechanism, Phys. Rev. Lett. 59 (1987) 213.

DOI: 10.1103/physrevlett.59.213

Google Scholar

[27] A. Munkholm, S. Brennan, F. Comin, L. Ortega, Observation of a distributed epitaxial oxide in thermally grown SiO2 on Si(001), Phys. Rev. Lett. 75 (1995) 4254.

DOI: 10.1103/physrevlett.75.4254

Google Scholar

[28] Y. Wei, R. M. Wallace, A. C. Seabaugh, Void formation on ultrathin thermal silicon oxide films on the Si(100) surface, Appl. Phys. Lett. 69 (1996) 1270.

DOI: 10.1063/1.117388

Google Scholar

[29] Z. H. Lu, J. P. McCaffrey, B. Brar, G. D. Wilk, R. M. Wallace, L. C. Feldman, S. P. Tay, SiO2 film thickness metrology by x-ray photoelectron spectroscopy, Appl. Phys. Lett. 71 (1997) 2764.

DOI: 10.1063/1.120438

Google Scholar

[30] H. Kageshima, K. Shiraishi, First-principles study of oxide growth on Si(100) surfaces and at SiO2/Si(100) interfaces, Phys. Rev. Lett. 81 (1998) 5936.

DOI: 10.1103/physrevlett.81.5936

Google Scholar

[31] A. Stesmans, V. V. Afanas'ev, Electron spin resonance features of interface defects in thermal (100)Si/SiO2, J. Appl. Phys. 83 (1998) 2449.

DOI: 10.1063/1.367005

Google Scholar

[32] Y. Tu, J. Tersoff, Structure and energetics of the Si-SiO2 interface, Phys. Rev. Lett. 84 (2000) 4393.

Google Scholar

[33] J. H. Oh, H. W. Yeom, Y. Hagimoto, K. Ono, and M. Oshima, N. Hirashita, M. Nywa, A. Toriumi, A. Kakizaki, Chemical structure of the ultrathin SiO2/Si(100) interface: An angle-resolved Si 2p photoemission study, Phys. Rev. B 63 (2001) 205310.

DOI: 10.1103/physrevb.63.205310

Google Scholar

[34] Fundamental Aspects of Silicon Oxidation edited by Y. J. Chabal (2001) Springer.

Google Scholar

[35] A. Bongiorno, A. Pasquarello, M. S. Hybertsen, L. C. Feldman, Transition structure at the Si(100)-SiO2 interface, Phys. Rev. Lett. 90 (2003) 186101.

Google Scholar

[36] T. Yamasaki, K. Kato, T. Uda, Oxidation of the Si(001) surface: lateral growth and formation of Pb0 centers, Phys. Rev. Lett. 91 (2003) 146102.

Google Scholar

[37] S. Imai, S. Mizushima, W. B. Kim, H. Kobayashi, Properties of thick SiO2/Si structure formed at 120 C by use of two-step nitric acid oxidation method, Appl. Surf. Sci. 254 (2008) 8054.

DOI: 10.1016/j.apsusc.2008.03.025

Google Scholar

[38] G. Dingemans, M. C. M. van de Sanden, W. M. M. Kessels, Excellent Si surface passivation by low temperature SiO2 using an ultrathin Al2O3 capping film, Phys. Status Sol. RRL 5 (2011) 22.

DOI: 10.1002/pssr.201004378

Google Scholar

[39] A. Laades, H. Angermann, H.-P. Sperlich, U. Stürzebecher, C. A. D. Álvarez, M. Bähr, A. Lawerenz 2013 Wet chemical oxidation of silicon surfaces prior to the deposition of all PECVD AlOx/a-SiNx passivation stacks for silicon solar cells, Sol. State Phenom. 195 (2013) 310.

DOI: 10.4028/www.scientific.net/ssp.195.310

Google Scholar

[40] M. A. Juntunen, J. Heinonen, V. Vähänissi, P. Repo, D. Valluru, H. Savin, Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction, Nat. Photon. 10 (2016) 777.

DOI: 10.1038/nphoton.2016.226

Google Scholar

[41] M. Köhler, M. Pomaska, F. Lentz, F. Finger, U. Rau, K. Ding, Wet-chemical preparation of silicon tunnel oxides for transparent passivated contacts in crystalline silicon solar cells, ACS Appl. Mat. & Int.  10 (2018) 14259.

DOI: 10.1021/acsami.8b02002

Google Scholar

[42] S. S. Cheema, N. Shanker, L. C. Wang, C. H. Hsu, S. L. Hsu, Y. H. Liao, M. S. Jose, J. Gomez, W. Chakraborty, W. Li, J. H. Bae, S. K. Volkman, D. Kwon, Y. Rho, G. Pinelli, R. Rastogi, D. Pipitone, C. Stull, M. Cook, B. Tyrrell, V. A. Stoica, Z. Zhang, J. W. Freeland, C. J. Tassone, A. Mehta, G. Saheli, D. Thompson, D. I. Suh, W. T. Koo, K. J. Nam, D. J. Jung, W. B. Song, C. H. Lin, S. Nam, J. Heo, N. Parihar, C. P. Grigoropoulos, P. Shafer, P. Fay, R. Ramesh, S. Mahapatra, J. Ciston, S. Datta, M. Mohamed, C. Hu,  S. Salahuddin, Ultrathin ferroic HfO2-ZrO2 superlattice gate stack for advanced transistors, Nature 604 (2022) 6.

DOI: 10.1038/s41586-022-04425-6

Google Scholar

[43] S. Bakhshi, N. Zin, H. Ali, M. Wilson, D. Chanda, K. O. Davis, W. V. Schoenfeld, Simple and versatile UV-ozone oxide for silicon solar cell applications, Sol. Energy Mat. Sol. Cells 185 (2018) 505.

DOI: 10.1016/j.solmat.2018.06.006

Google Scholar

[44] E. P. Gusev, H. C. Lu, T. Gustafsson, E. Garfunkel, Growth mechanism of thin silicon oxide films on Si(100) studied by medium-energy ion scattering, Phys. Rev. B 52 (1995) 1759.

DOI: 10.1103/physrevb.52.1759

Google Scholar

[45] H. Angermann, T. Dittrich, H. Flietner, Investigation of native-oxide growth on HF-treated Si(111) surfaces by measuring the surface-state distribution, Appl. Phys. A Sol. Surf. 59 (1994) 193.

DOI: 10.1007/bf00332216

Google Scholar

[46] B. J. Hallam, P. G. Hamer, A. M. C. née Wenham, C. E. Chan, B. V. Stefani, S. Wenham, Development of advanced hydrogenation processes for silicon solar cells via an improved understanding of the behaviour of hydrogen in silicon, Progr. Photov. 28 (2020) 1217.

DOI: 10.1002/pip.3240

Google Scholar

[47] M. U. Khan, D. Chen, S. Jafari, T. Ohshima, H. Abe, Z. Hameiri, C. M. Chong, M. Abbott Degradation and regeneration of radiation-induced defects in silicon: A study of vacancy-hydrogen, Sol. Energy Mat. Sol. Cells 200 (2019) 109990.

DOI: 10.1016/j.solmat.2019.109990

Google Scholar

[48] A.-M. El-Sayed, Y. Wimmer, W. Goes, T. Grasser, V. V. Afanas'ev, A. L. Shluger, Theoretical models of hydrogen-induced defects in amorphous silicon dioxide, Phys. Rev. B 92 (2015) 014107.

DOI: 10.1103/physrevb.92.014107

Google Scholar

[49] M. Kuzmin, J.-P. Lehtiö, J. Mäkelä, M. Yasir, Z. J. Rad, E. Vuorinen, A. Lahti, M. Punkkinen, P. Laukkanen, K. Kokko, H.-P. Hedman, R. Punkkinen, M. Lastusaari, P. Repo, H. Savin, Observation of crystalline oxidized silicon phase, Adv. Mater. Interf. 6 (2019) 1802033.

DOI: 10.1002/admi.201802033

Google Scholar

[50] Z. J. Rad, J-P. Lehtiö, I. Mack, K. Rosta, K. Chen, V. Vähänissi, M. Punkkinen, R. Punkkinen, H-P. Hedman, A. Pavlov, M. Kuzmin, H. Savin, P. Laukkanen, K. Kokko, Decreasing interface defect densities via silicon oxide passivation at temperatures below 450C, ACS Appl. Mat. Interf. 12 (2020) 46933.

DOI: 10.1021/acsami.0c12636

Google Scholar

[51] Z. J. Rad, J.-P. Lehtiö, K. Chen, I. Mack, V. Vähänissi, M. Punkkinen, R. Punkkinen, H.-P. Hedman, M. Kuzmin, H. Savin, P. Laukkanen, K. Kokko, Effects of post treatment of oxide-silicon interfaces in ultrahigh vacuum below 400 ºC, Vacuum 202 (2022) 111134.

DOI: 10.1016/j.vacuum.2022.111134

Google Scholar

[52] G. D. Wilk, R. M. Wallace, B. P. S. Brar, Low temperature method for forming a thin, uniform oxide, Patent US7030038B1 (2006).

Google Scholar

[53] G. D. Wilk, Y. Wei, H. Edwards, R. M. Wallace, In situ Si flux cleaning technique for producing atomically flat Si(100) surfaces at low temperature, Appl. Phys. Lett. 70 (1997) 2288.

DOI: 10.1063/1.119083

Google Scholar