[1]
W. Cao, S. Ying, X. Ge, D. Liu, SiC Superjunction MOSFET with Schottky diode for improving short-circuit and reverse recovery Ruggedness, Micro and Nanostructures (2024) 207847.
DOI: 10.1016/j.micrna.2024.207847
Google Scholar
[2]
B. Shi, A.I. Ramones, Y. Liu, H. Wang, Y. Li, S. Pischinger, J. Andert, A review of silicon carbide MOSFETs in electrified vehicles: Application, challenges, and future development, IET Power Electronics 16 (2023) 2103–2120.
DOI: 10.1049/pel2.12524
Google Scholar
[3]
J. Camassel, S. Contreras, Matériaux semiconducteurs à grand gap : le carbure de silicium (SiC), Électronique (2012).
DOI: 10.51257/a-v2-e1990
Google Scholar
[4]
W.C. Mitchel, W.D. Mitchell, M.E. Zvanut, G. Landis, High temperature Hall effect measurements of semi-insulating 4H–SiC substrates, Solid-State Electronics 48 (2004) 1693–1697.
DOI: 10.1016/j.sse.2004.02.025
Google Scholar
[5]
M.A. Pinault-Thaury, F. Jomard, Nitrogen Investigation by SIMS in Two Wide Band-Gap Semiconductors: Diamond and Silicon Carbide, Materials Science Forum 1062 (2022) 376–382.
DOI: 10.4028/p-684nsi
Google Scholar
[6]
M. Lazar, F. Enoch, F. Laariedh, D. Planson, P. Brosselard, Influence of the Masking Material and Geometry on the 4H-SiC RIE Etched Surface State, Materials Science Forum 679–680 (2011) 477–480.
DOI: 10.4028/www.scientific.net/MSF.679-680.477
Google Scholar
[7]
M. Lazar, F. Laariedh, P. Cremillieu, D. Planson, J.-L. Leclercq, The channeling effect of Al and N ion implantation in 4H–SiC during JFET integrated device processing, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 365 (2015) 256–259.
DOI: 10.1016/j.nimb.2015.07.033
Google Scholar
[8]
F. Laariedh, M. Lazar, P. Cremillieu, J. Penuelas, J.-L. Leclercq, D. Planson, The role of nickel and titanium in the formation of ohmic contacts on p-type 4H–SiC, Semicond. Sci. Technol. 28 (2013) 045007.
DOI: 10.1088/0268-1242/28/4/045007
Google Scholar
[9]
S. Nakashima, H. Harima, Raman Investigation of SiC Polytypes, Physica Status Solidi (a) 162 (1997) 39–64. https://doi.org/10.1002/1521-396X(199707)162:1<39::AID-PSSA39>3.0.CO;2-L.
DOI: 10.1002/1521-396x(199707)162:1<39::aid-pssa39>3.0.co;2-l
Google Scholar
[10]
Z. Xu, Z. He, Y. Song, X. Fu, M. Rommel, X. Luo, A. Hartmaier, J. Zhang, F. Fang, Topic Review: Application of Raman Spectroscopy Characterization in Micro/Nano-Machining, Micromachines 9 (2018) 361.
DOI: 10.3390/mi9070361
Google Scholar
[11]
Y. Song, Z. Xu, T. Liu, M. Rommel, H. Wang, Y. Wang, F. Fang, Depth Profiling of Ion-Implanted 4H–SiC Using Confocal Raman Spectroscopy, Crystals 10 (2020) 131.
DOI: 10.3390/cryst10020131
Google Scholar
[12]
Kelvin Probe Force Microscopy (KPFM), (n.d.). https://www.bruker.com/en/products-and-solutions/microscopes/materials-afm/afm-modes/kpfm.html (accessed September 14, 2023).
Google Scholar
[13]
N. Bercu, M. Lazar, O. Simonetti, P.M. Adam, M. Brouillard, L. Giraudet, KPFM - Raman Spectroscopy Coupled Technique for the Characterization of Wide Bandgap Semiconductor Devices, MSF 1062 (2022) 330–334.
DOI: 10.4028/p-c35702
Google Scholar
[14]
U. Gysin, E. Meyer, Th. Glatzel, G. Günzburger, H.R. Rossmann, T.A. Jung, S. Reshanov, A. Schöner, H. Bartolf, Dopant imaging of power semiconductor device cross sections, Microelectronic Engineering 160 (2016) 18–21.
DOI: 10.1016/j.mee.2016.02.056
Google Scholar
[15]
M. Buzzo, M. Ciappa, W. Fichtner, Imaging and dopant profiling of silicon carbide devices by secondary electron dopant contrast, IEEE Transactions on Device and Materials Reliability 6 (2006) 203–212.
DOI: 10.1109/TDMR.2006.876605
Google Scholar
[16]
S. Chung, V. Wheeler, R. Myers-Ward, L.O. Nyakiti, C.R. Eddy, D.K. Gaskill, M. Skowronski, Y.N. Picard, Secondary electron dopant contrast imaging of compound semiconductor junctions, Journal of Applied Physics 110 (2011) 014902.
DOI: 10.1063/1.3597785
Google Scholar
[17]
H. Rossmann, U. Gysin, A. Bubendorf, T. Glatzel, S.A. Reshanov, A. Schöner, T.A. Jung, E. Meyer, H. Bartolf, Two-Dimensional Carrier Profiling on Lightly Doped n-Type 4H-SiC Epitaxially Grown Layers, Materials Science Forum 821–823 (2015) 269–272.
DOI: 10.4028/www.scientific.net/MSF.821-823.269
Google Scholar
[18]
Th. Glatzel, S. Sadewasser, R. Shikler, Y. Rosenwaks, M.Ch. Lux-Steiner, Kelvin probe force microscopy on III–V semiconductors: the effect of surface defects on the local work function, Materials Science and Engineering: B 102 (2003) 138–142.
DOI: 10.1016/S0921-5107(03)00020-5
Google Scholar
[19]
F. Roccaforte, F. Giannazzo, G. Greco, Ion Implantation Doping in Silicon Carbide and Gallium Nitride Electronic Devices, Micro 2 (2022) 23–53.
DOI: 10.3390/micro2010002
Google Scholar
[20]
Y.-D. Tang, X.-Y. Liu, Z.-D. Zhou, Y. Bai, C.-Z. Li, Defects and electrical properties in Al-implanted 4H-SiC after activation annealing*, Chinese Phys. B 28 (2019) 106101.
DOI: 10.1088/1674-1056/ab3cc2
Google Scholar
[21]
J. Weise, C. Csato, M. Hauck, J. Erlekampf, S. Akhmadaliev, M. Rommel, H. Mitlehner, M. Rub, M. Krieger, A. Bauer, V. Haublein, T. Erlbacher, L. Frey, Impact of Al-Ion Implantation on the Formation of Deep Defects in n-Type 4H-SiC, 2018 22nd International Conference on Ion Implantation Technology (IIT) (2018) 66–69.
DOI: 10.1109/IIT.2018.8807980
Google Scholar
[22]
J.C. Burton, L. Sun, F.H. Long, Z.C. Feng, I.T. Ferguson, First- and second-order Raman scattering from semi-insulating 4H-SiC, (n.d.) 3.
Google Scholar
[23]
X. Qin, X. Li, X. Chen, X. Yang, F. Zhang, X. Xu, X. Hu, Y. Peng, P. Yu, Raman scattering study on phonon anisotropic properties of SiC, Journal of Alloys and Compounds 776 (2019) 1048–1055.
DOI: 10.1016/j.jallcom.2018.10.324
Google Scholar
[24]
X.-B. Li, Z.-Z. Chen, E.-W. Shi, Effect of doping on the Raman scattering of 6H-SiC crystals, Physica B: Condensed Matter 405 (2010) 2423–2426.
DOI: 10.1016/j.physb.2010.02.058
Google Scholar
[25]
H. Harima, S. Nakashima, T. Uemura, Raman scattering from anisotropic LO-phonon–plasmon–coupled mode in n -type 4H– and 6H–SiC, Journal of Applied Physics 78 (1995) 1996–2005.
DOI: 10.1063/1.360174
Google Scholar
[26]
T. Mitani, S. Nakashima, M. Tomobe, S. Ji, K. Kojima, H. Okumura, Carrier Density Dependence of Fano Type Interference in Raman Spectra of p-type 4H-SiC, Materials Science Forum 778–780 (2014) 475–478.
DOI: 10.4028/www.scientific.net/MSF.778-780.475
Google Scholar
[27]
H. Harima, T. Hosoda, S. Nakashima, Carrier Density Evaluation in P-Type SiC by Raman Scattering, MSF 338–342 (2000) 607–610.
DOI: 10.4028/www.scientific.net/MSF.338-342.607
Google Scholar
[28]
P. Kwasnicki, R. Arvinte, H. Peyre, M. Zielinski, L. Konczewicz, S. Contreras, J. Camassel, S. Juillaguet, Raman Investigation of Heavily Al Doped 4H-SiC Layers Grown by CVD, Materials Science Forum 806 (2015) 51–55.
DOI: 10.4028/www.scientific.net/MSF.806.51
Google Scholar
[29]
S. Lin, Z. Chen, L. Li, C. Yang, Effect of impurities on the Raman scattering of 6H-SiC crystals, Mat. Res. 15 (2012) 833–836.
DOI: 10.1590/S1516-14392012005000108
Google Scholar
[30]
S. Nakashima, T. Kitamura, T. Mitani, H. Okumura, M. Katsuno, N. Ohtani, Raman scattering study of carrier-transport and phonon properties of 4 H − Si C crystals with graded doping, Phys. Rev. B 76 (2007) 245208.
DOI: 10.1103/PhysRevB.76.245208
Google Scholar
[31]
H. Harima, Raman scattering characterization on SiC, Microelectronic Engineering 83 (2006) 126–129.
DOI: 10.1016/j.mee.2005.10.037
Google Scholar
[32]
K. Piskorski, M. Guziewicz, M. Wzorek, L. Dobrzański, Investigation of Al- and N-implanted 4H–SiC applying visible and deep UV Raman scattering spectroscopy, AIP Advances 10 (2020) 055315.
DOI: 10.1063/1.5144579
Google Scholar
[33]
K. Kamalakkannan, R. Rajaraman, B. Sundaravel, G. Amarendra, K. Sivaji, Raman studies in Al+ implanted semi insulating 6H-SiC, Materials Letters 344 (2023) 134404.
DOI: 10.1016/j.matlet.2023.134404
Google Scholar