Concept and Technology for Full Monolithic MOSFET and JBS Vertical Integration in Multi-Terminal 4H-SiC Power Converters

Article Preview

Abstract:

New and original medium power multi-terminal SiC monolithic converter architectures are investigated with vertical switching cells based on SiC JBS diodes and VDMOS transistors. 2D TCAD and mixed-mode Sentaurus™ simulations are performed to optimize switching structures as Buck, Boost, H-bridge high-side row chip common drain-type and low-side row chip common source-type. The proper operation in the turn-on and turn-off of each cell is also studied and validated. To fabricate these new monolithic integrated architectures, two main technological bricks have been developed, for vertical insulation and the integration of a top Ni metal via. To achieve the vertical insulation deep trenches are necessary combining dry plasma and wet KOH electrochemical etching through the thick N+ substrate.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Z. J. Shen: SiC Research Beyond Power MOSFET: What's Next? IEEE Power Electronics Magazine Vol. 8, no. 2 (2021) p.14.

DOI: 10.1109/mpel.2021.3075788

Google Scholar

[2] H. Yamaguchi et al., 3D-PEIM International Symposium Osaka, Japan, 2021, p.1.

Google Scholar

[3] S. Tanimoto and K. Matsui: High Junction Temperature and Low Parasitic Inductance Power Module Technology for Compact Power Conversion Systems IEEE Transactions on Electron Devices Vol. 62, no.2 (2015) p.258

DOI: 10.1109/ted.2014.2359978

Google Scholar

[4] M. Okamoto, A. Yao, H. Sato, S. Harada: First Demonstration of a Monolithic SiC Power IC Integrating a Vertical MOSFET with a CMOS Gate Buffer ISPSD International Symposium, Nagoya, Japan (2021) p.71.

DOI: 10.23919/ispsd50666.2021.9452262

Google Scholar

[5] A. El Khadiry, A. Bourennane, F. Richardeau: Converter Integration in Si: Dual-Chip and Ultimate Monolithic Integrations IEEE TED, Vol. 63, no. 5 (2016) p.1977.

DOI: 10.1109/ted.2016.2537212

Google Scholar

[6] A. Lale, A. Bourennane, F. Richardeau, N. Videau: Three Multiterminal Silicon Power Chips for an Optimized Monolithic Integration of Switching Cells: Validation on an H-Bridge Inverter," IEEE Trans Electron Devices, Vol. 66, no. 12 (2019) p.5238.

DOI: 10.1109/ted.2019.2946749

Google Scholar

[7] V. Soler, Design and Process Development towards an Optimal 6.5 kV SiC Power MOSFET, Phd Thesis, Universitat Politècnica De Catalunya Barcelonatech (2019).

Google Scholar

[8] M. Cabello, V. Soler, G; Rius, Josep Montserrat, J. Rebollo, P. Godignon, Advanced processing for mobility improvement in 4H-SiC MOSFETs: A review, Materials Science in Semiconductor Processing, Vol. 78 (2018) p.22.

DOI: 10.1016/j.mssp.2017.10.030

Google Scholar

[9] K. Han et al. Monolithic 4-Terminal 1.2 kV/20 A 4H-SiC Bi-Directional Field Effect Transistor (BiDFET) with Integrated JBS Diodes 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria (2020) p.242

DOI: 10.1109/ispsd46842.2020.9170064

Google Scholar

[10] Sentaurus TCAD Simulation Tool by Synopsys Inc. Version U 2022.12-SP1.

Google Scholar

[11] O Slobodyan, J. Flicker, J. Dickerson, et al. Analysis of the dependence of critical electric field on semiconductor bandgap Journal of Materials Research Vol. 37 (2022) p.849

DOI: 10.1557/s43578-021-00465-2

Google Scholar

[12] M. Lazar, F. Laariedh, P. Cremillieu, D. Planson, J.-L. Leclercq: The channeling effect of Al and N ion implantation in 4H–SiC during JFET integrated device processing Nucl.Instrum.Method Phys.Res.B Vol. 365 (2015) p.256.

DOI: 10.1016/j.nimb.2015.07.033

Google Scholar

[13] N. Beydoun, M. Lazar, X. Gassman: SiC Plasma and Electrochemical Etching for Integrated Technology Processes Rom. J. Inf. Sci. Technol. Vol. 26 (2) (2023) p. 238p.

Google Scholar

[14] D.-G. Kurth and T. Bein: Thin films of (3-Aminopropyl) Triethoxysilane on Aluminum Oxide and Gold substrates Langmuir Vol. 11 (1995) p.3061

DOI: 10.1021/la00008a035

Google Scholar