[1]
R. Hoelzl, M. Blietz, L. Fabry, R. Schmolke, Electrochem. Soc. Proc. Vol. 2002-2 (2002), p.608
Google Scholar
[2]
G. Taguchi: System of Experimental Design, Vol. 1,2 (Unipub 1988)
Google Scholar
[3]
Kelton, Falster, Gambaro, Olmo, Cornara, Wei: J. Appl. Phys., Vol. 85 (1999), p.8097
Google Scholar
[4]
M. Schrems: Academic Press, New York, 42, (1994), p.391
Google Scholar
[5]
Li Long: The numerical Simulation of Oxygen Precipitation in Silicon, dissertation, Shaker Verlag Aachen (2001)
Google Scholar
[6]
Esfandyari: Modellierung und Computersimulation der Sauerstoffpräzipitation in Silicium, dissertation, TU Wien (1995)
Google Scholar
[7]
T. R. Sinno: Defects in Crystalline Silicon: Integrated Atomistic and Continuum Modeling, dissertation, Massachusetts Institute of Technology (1998)
Google Scholar
[8]
A. Borghesi, B. Pivac, A. Sassela, A. Stella: J. Appl. Phys. (Appl. Phys. Rev.), 99(7), (1995), p.4169
Google Scholar
[9]
H. Takeno, Y. Hayamizu, K. Miki: J. Appl. Phys., Vol. 84 (1998), p.3113
Google Scholar
[10]
Y. Takano, M. Maki: Electrochem. Soc. Proc., Vol. PV-73 (1973), p.469
Google Scholar
[11]
Mikkelsen, J.C., Oxygen: carbon, hydrogen and nitrogen in crystalline silicon, 1 st edition, Pittsburgh , Mat. Res. Soc., (1986)
Google Scholar
[12]
M. Stavola, J.R. Patel, L.C. Kimerling, P.E. Freedland: Appl. Phys. Lett., nr. 42 (1983), p.73
Google Scholar
[13]
R. A. Craven, Pennington: Electrochem. Soc., 1981, p.254
Google Scholar
[14]
G. Kissinger, J. Vanhellemont, U. Lambert, E. Dornberger, R. Sorge, G. Morgenstern, T. Grabolla, D. Gräf, W. von Ammon, P. Wagner, H. Richter, Electrochem. Soc. Proc.Vol. 981 (1998), p.1095
DOI: 10.1149/1.1391875
Google Scholar
[15]
V. V. Voronkov, R. Falster: J. Appl. Phys., Vol. 91 (2002), p.5802
Google Scholar
[16]
K. Wada, N. Inoue: Semiconductor Silicon, H. R. Hull, T. Abe, B. Kolbesen (1986), p.778
Google Scholar