Effect of Ge Nanoislands on Lateral Photoconductivity of Ge-SiOX-Si Structures

Article Preview

Abstract:

The results of the experimental studies of the effect of nanoislands on the lateral photoconductivity in structures with Ge nanoislands formed on the SiOx layer using molecular beam epitaxy are reported. It is shown that nanoislands increase the surface recombination rate and affect the fundamental absorption edge of c-Si. The generation of lateral photocurrent in the range 0.8 – 1.0 eV was observed due to transitions between tails in the density of states of the near-surface c-Si, which is described by Urbach dependence. It was shown that the absorption spectrum of nanoislands is typical for the disordered Ge and is due to transitions between density-of-states tails of the valence and conductance bands. The mechanism is proposed of lateral photoconductivity involving the non-equilibrium charge carriers, generated in Ge nanoislands. It is suggested that the optical absorption and lateral photocurrent in Ge-SiOx-Si structures are affected by fluctuations of the surface potential in the near-surface region of c-Si, fluctuations of the Si band gap width and by effects of disorder in Ge nanoislands.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-186

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Brunner: Rep. Prog. Phys. Vol. 65 (2002), p.27–72.

Google Scholar

[2] N.P. Stepina, V.V. Kirienko, A.V. Dvurechenskii, S.A. Alyamkin, V.A. Armbrister, A.V. Nenashev: Semicond. Sci. Technol. Vol. 24 (2009), 025015.

DOI: 10.1088/0268-1242/24/2/025015

Google Scholar

[3] P. Normand, E. Kapetanakis, D. Tsoukalas, G. Kamoulakos, K. Beltos, J. Van Den Berg, S. Zhang: Mat. Sci. Eng C Vol. 15 (2001), p.145.

Google Scholar

[4] M. Kanoun, C. Busseret, A. Poncet, A. Souifi, T. Baron, E. Gauter: Solid-State Electron. Vol. 50 (2006), p.1310.

DOI: 10.1016/j.sse.2006.07.006

Google Scholar

[5] J.P. Conde, V. Chu, D.S. Shen, and S. Wagner: J. Appl. Phys. Vol. 75 (1994), p.1638.

Google Scholar

[6] A.A. Shklyaev and M. Ichikawa, Surf. Sci. Vol. 19 (2002), p.514.

Google Scholar

[7] V.A. Gritsenko, Yu.P. Kostikov, N.A. Romanov: ZhETF Letters 34 (1981), p.3.

Google Scholar

[8] M. Ya. Valakh, V.M. Dzhagan, V.O. Yukhymchuk, O.V. Vakulenko, S.V. Kondratenko, A.S. Nikolenko: Semicond Sci. Technol. Vol. 22 (2007), p.326.

DOI: 10.1088/0268-1242/22/4/005

Google Scholar

[9] N.F. Mott, E.A. Davies. Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford 1979).

Google Scholar

[10] M.L. Theye: Mater. Res. Bull. Vol. 6 (1971), p.103.

Google Scholar

[11] E. Kasper and K. Lyutovich (ed. ) Properties of Silicon Germanium and SiGe: Carbon (London: INSPEC 2000).

Google Scholar

[12] F. Urbach: Phys. Rev. Vol. 130 (1963), p.1324.

Google Scholar

[13] S.V. Kondratenko, O.V. Vakulenko, Y.N. Kozyrev, M.Y. Rubezhanska, A.S. Nikolenko, S.L. Golovinskiy: Surf. Sci. Vol. 601 (2007), p. L45.

DOI: 10.1016/j.susc.2007.03.011

Google Scholar

[14] S.V. Kondratenko, O.V. Vakulenko, Y.N. Kozyrev, M.Y. Rubezhanska, A.S. Nikolenko, S.L. Golovinskiy: Nanotechnology Vol. 18 (2007), p.185401.

DOI: 10.1088/0957-4484/18/18/185401

Google Scholar

[15] Y.N. Kozyrev, S.V. Kondratenko, M.Y. Rubezhanska, V.S. Lysenko, C. Teichert, C. Hofer, in: Nanomaterials and Supramolecular Structures – Physics, Chemistry and Applications, ed. by A.P. Shpak, P.P. Gorbyk, Springer Verlag, Berlin (2010).

Google Scholar

[16] D. Redfield: Phys. Rev. Vol. 130 (1963), p.916.

Google Scholar

[17] J.I. Pankove. Optical Processes in Semiconductors (Englewood Cliffs, New Jersey 1971).

Google Scholar