A Model of the Evolution of the Au/Si Droplet Ensembles during Rapid Thermal Annealing at High Temperatures

Article Preview

Abstract:

Formation of the patterns of catalytically active metal containing droplets on substrates is an important process for the growing Si wire-like crystals because it predetermines the main crystal parameters. Understanding physical mechanisms of droplet evolution during thermal treatments and derivation of associated parameters are the clue to the controlled formation of droplet ensembles and thus to the predicted growing Si wire-like crystals. In this work, the kinetics of the evolution of droplet ensembles on the surface of substrate as a result of coalescence and atom evaporation is studied theoretically. Obtained theoretical results are compared to the experimental data on the evolution of the ensembles of Au/Si droplets on Si substrate formed by rapid thermal anneals of thin gold film in the temperature range from 900 to 1050°C. The activation energy of droplet diffusion on the surface of substrates is estimated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

187-194

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Westwater, D. P. Gosain and S. Usui: Jpn. J. Appl. Phys. Vol. 36 (1997), p.6204.

Google Scholar

[2] A. I. Hochbaum, R. Fan, R. He and P. Yang: Nano Lett. Vol. 5 (2005), p.457.

Google Scholar

[3] B. Fuhrmann, H. S. Leipner, H. -R. Höche, L. Schubert, P. Werner, and U. Gösele: Nano Lett. Vol. 5 (2005), p.2524.

DOI: 10.1021/nl051856a

Google Scholar

[4] B. K. Chakraverty J. Phys. Chem. Solids Vol. 28 (1967), p.2401.

Google Scholar

[5] S. C. Jain and A. E. Hughes, J. Mater. Sci. Vol. 13 (1978), p.1611.

Google Scholar

[6] M. Zinke-Allmang, in: Kinetics of Ordering and Growth at Surfaces, edited by M. G. Lagally, Plenum, NY (1990), p.455.

Google Scholar

[7] J. Chaiken and J. Goodisman, Thin Solid Films Vol. 260 (1995), p.243.

Google Scholar

[8] R. Botet and R. Jullien, J. Phys. A Vol. 17 (1984), p.2517.

Google Scholar

[9] M. Villarica, M. J. Casey, J. Goodsman and J. Chaiken, J. Chem. Phys. Vol. 98 (1993), p.4610.

Google Scholar

[10] P. Meakin, Physica A Vol. 165 (1990), p.1.

Google Scholar

[11] D. S. Sholl and R. T. Skodje, Phys. Rev. Lett. Vol. 75 (1995), p.3158.

Google Scholar

[12] W. W. Pai, A. K. Swan, Z. Zhang and J. F. Wendelken, Phys. Rev. Lett. Vol. 79 (1997), p.3210.

Google Scholar

[13] J. -M. Wen, S. -L. Chang, J. W. Burnett, J. W. Evans and P. A. Thiel, Phys. Rev. Lett. Vol. 73 (1994), p.2591.

Google Scholar

[14] D. J. Semin, A. Lo, S. E. Roark, R. T. Skodje and K. L. Rowlen, J. Chem. Phys. Vol. 105 (1996), p.5542.

Google Scholar

[15] A. Masson, J. J. Metois and R. Kern, Surf. Sci. Vol. 27 (1971), p.463.

Google Scholar

[16] C. R. Henry, C. Chapon and B. Mutaftschiev, Thin Solid Films Vol. 46 (1977), p.157.

Google Scholar

[17] C. Chapon and C. R. Henry, Surf. Sci. Vol. 106 (1981), p.152.

Google Scholar

[18] F. Ruffino and M. G. Grimaldi: J. Appl. Phys. Vol. 107 (2010), p.104321.

Google Scholar

[19] J. F. Chang, T. F. Young, Y. L. Yang, H. Y. Ueng and T. C. Chang, Mater. Chem. and Phys. Vol. 83 (2004), p.199.

Google Scholar

[20] C. -L. Kuo and P. Clancy, Surf. Sci. Vol. 551 (2004), p.39.

Google Scholar

[21] A. Hiraki, Jpn. J. Appl. Phys. Vol. 22 (1983), p.549.

Google Scholar

[22] A. Cros and P. Muret, Mater. Sci. Rep. Vol. 8 (1992), p.271.

Google Scholar

[23] C. G. Granqvist and R. A. Buhrman: J. Appl. Phys. Vol. 47 (1976), p.2200.

Google Scholar

[24] C. G. Granqvist and R. A. Buhrman: Sol. St. Commun. Vol. 18 (1976), p.123.

Google Scholar

[25] J. Goodisman and J. Chaiken: J. Chem. Phys. Vol. 125 (2006), p.074304.

Google Scholar

[26] B. A. Trubnikov: Pis'ma ZhETF Vol. 60 (1994), p.753.

Google Scholar

[27] I. R. Bagdasarova and V. A. Galkin: Matematicheskoe Modelitovanie Vol. 11 (1999), p.82.

Google Scholar