Advanced Materials Research
Vol. 95
Vol. 95
Advanced Materials Research
Vols. 93-94
Vols. 93-94
Advanced Materials Research
Vol. 92
Vol. 92
Advanced Materials Research
Vols. 89-91
Vols. 89-91
Advanced Materials Research
Vols. 87-88
Vols. 87-88
Advanced Materials Research
Vols. 83-86
Vols. 83-86
Advanced Materials Research
Vols. 79-82
Vols. 79-82
Advanced Materials Research
Vols. 76-78
Vols. 76-78
Advanced Materials Research
Vol. 75
Vol. 75
Advanced Materials Research
Vol. 74
Vol. 74
Advanced Materials Research
Vols. 71-73
Vols. 71-73
Advanced Materials Research
Vols. 69-70
Vols. 69-70
Advanced Materials Research
Vol. 68
Vol. 68
Advanced Materials Research Vols. 79-82
Paper Title Page
Abstract: Electronic structure and optical properties of non-metals (N, S, F, P, Cl) -doped cubic NaTaO3 were investigated systematically by density functional theory (DFT). The results showed that the substitution of (N, S, P, Cl) for O in NaTaO3 was effective in narrowing the band-gap relative to the F-doped NaTaO3. The larger red shift of the absorption edge and the higher visible light absorption at about 520 nm were found for the (N and P)-doped NaTaO3. The excitation from the impurity states to the conduction band may account for the red shift of the absorption edge in an electron-deficiency non-metal doped NaTaO3. The obvious absorption in the visible light region for (N and P)-doped NaTaO3 provides an important guidance for the design and preparation of the visible light photoactive materials.
1245
Abstract: Density functional theory plane-wave pseudopotential with the general gradient approximation (GGA) was used to investigate electronic structural properties and the bulk spontaneous polarization (Ps) of PbZr0.4Ti0.6O3. It is found that there are strong hybridizations between Ti 3d states or Zr 4d states and O 2p states, which can reduce short-range repulsion in atoms and enhance the stability of the ferroelectric phase of PbZr0.4Ti0.6O3. Compared with cubic ideal structure, the calculated internal electronic structural data indicate that the slightly distorted O6 octahedrons around the central Ti and Zr atoms change to the Ti-O5 and Zr-O5 pyramid in the optimized structure, respectively. The major contribution to the spontaneous polarization along [001] comes from the stronger interaction along the c axis between the Ti and O rather than the Zr and O ions. The Pb atom’s relative displacement of oxygen octahedral implies that the Pb-O bonding interaction is also a key factor impacting the ferroelectricity of PbZr0.4Ti0.6O3. A theoretical spontaneous polarization of 0.78 C/m2 was computed in the tetragonal PbZr0.4Ti0.6O3 along [001] direction, consistent with the single crystal experimental data.
1249
Abstract: In the present paper, the lattice structure, band structure and density of state of pure and P-doped ZnO are calculated by first-principle method based on density functional theory. By analyzing the Mulliken charge overlap population and bond length, it is found that the bond of P-Zn is longer and stronger than O-Zn bond for PO-ZnO. But for PZn-ZnO, the O-P bond becomes shorter and more powerful than O-Zn bond. Also, weak O-O bonds are formed in this case. Our results show that the final total energy of PO-ZnO is lower than PZn-ZnO. The lattice structure of PO-ZnO is more stability than PZn-ZnO. For PO-ZnO, The Fermi level moves into the valence band, which expresses that the holes appear on the top of valence band and thus the PO-ZnO exhibits p-type conductivity. For PZn-ZnO, the Fermi level moves up to the conductor band and the total density of states shifts to the lower energy region, thus PZn-ZnO shows the n-type conductivity.
1253
Abstract: In the present paper, the lattice structure, band structure and density of state of LaAlO3 and LaAlO3:Mg are calculated by first-principle method based on density functional theory. Firstly, we select the different cutoff energy and k-point grid in the calculations, and obtain the most stable geometry structure of single crystal LaAlO3. The calculated lattice parameters are a=b=5.441 Å, c=13.266 Å, which matches with experimental values. To deeply understand the electronic structure of LaAlO3, a 2×1×1 super-cell structure is established and the doping concentration of Mg at Al sites is 25%. From the band structure and density of states, it can be seen that LaAlO3 has a direct band gap Eg=3.6 eV. However, LaAlO3:Mg has a larger band gap Eg=3.89 eV and the Fermi level enters into the valence band, which indicates the holes are introduced. The calculated results show that the conductivity of LaAlO3:Mg is better than pure LaAlO3, which is in good agreement with experimental results.
1257
Abstract: The sol-gel technique is considered to be one of the most practical methods for producing ceramic membranes, and the properties of the sols could affect the microstructures of the desired products. Especially, optimized viscosity and a short gelation time can reduce the sol particles infiltrate into the pores of the support. So how to control the forming process of the gel is essential for fabricating the membranes. In this paper, we developed a kinetic equation of sol-gel transformation to study the relationships between viscosity and time of titanium sol systems by using N, N—Dimethylformamide (DMF) as solvent. Both the growth process of the sol particles and activation energy of the process were investigated according to the kinetic curves. The results indicate that the viscosity of sols decreases with the increment of R and temperature, but increases with rw, at the same time the gelation time decreases with rw, temperature and R. Furthermore, the growth of sol particles versus time accord with the NLG model, and the activation energy of gelation process decreased with R. When R changed from 2 to 6, the activation energy was decrease from 12.48KJ/mol to 9.35KJ/mol. According to the analysis of the results of the sol-gel transformation, a shorter gelation time could be obtained by increaseing the rw, R and the gelation’ temperature.
1261
Abstract: The influences of low frequency electromagnetic field on the as-cast structure of horizontal direct chill casting aluminum alloy slab were experimental and numerical studied. The results of numerical analysis show that the interaction of the low-frequency electromagnetic field and the melt can generate an electromagnetically induced forced flow in the melt, which, in turn, changes flow pattern and temperature field in the mold. the as-cast structure of slab can be greatly improved by the changes of flow pattern and temperature field. The results of experimental analysis show that the grains of low frequency electromagnetic casting (LFEC) are fine, uniform, equiaxed, rosette-shaped; the surface of the slab of LFEC has no cold shut and less exudations. Moreover, the low-frequency electromagnetic field can improve the distribution of solute elements in the slab. The macrosegregation such as negative segregation and gravity segregation were reduced, which results in the homogenous distributions of the solute elements over the cross-section of the slab.
1265
Abstract: In this paper, a three-dimensional finite element model is developed to simulate and analyze the turbulent flow in the mould of billet continuous casting. The result shows that if the SEN is used in the continuous casting process, there exists a symmetrical stronger vortex in the middle of the mould and a weaker vortex above the nozzle. The casting speed, the depth and diameter of SEN all have significant effect on the fluid flow field and the turbulent kinetic energy on the meniscus, and then have effect on the billet quality. At the given conditions, the optimum set of parameters is: the casting speed 0.035 , the depth of the SEN 0.1 , the diameter of the SEN 0.025 . Online verifying of this model has been developed, which can be proved that it is very useful to control the steel quality and improve the productivity.
1269
Abstract: Because of magnetorheological (MR) dampers’ mechanical simplicity, high dynamic range, low power requirements, large force capacity and robustness, they are the most promising devices for structural vibration control. But this paper uses MR dampers’ damp characteristics to complete a function of short time delay, and the damper’s volume is smaller than the other dampers that have been applied for commercial uses. This paper discusses two types of structures for time delay, gap structure time delay device and holes structure time delay device. In order to estimate the two kinds of devices’ delay time, mathematical modeling and experimental testing are built in this paper. From the test results, we know that holes structure does not always implement theoretical delay time, but the gap structure can complete the time delay function satisfactory. For judging whether the time delay device can work normally under different circumstance, the time delay device with gap structure is tested in a change temperature field from -40 °C to 55 °C.
1273
Abstract: In order to study the effects of liner materials on the formation of Shaped Charges with Double Layer Liners (SCDLL) into tandem Explosively Formed Projectile (EFP), the formation mechanism of DLSCL was studied. Utilizing two-dimensional finite element dynamic code AUTODYN, the numerical simulations on the mechanical phenomenon of SCDLL forming into tandem EFP were carried out. X-ray pictures were obtained after Experiments on SCDLL. Comparisons between experimental results and numerical simulation results have good agreement. It can be concluded from the results that the materials properties and configurations of both liners are crucial to the formation of tandem EFP.
1277
Abstract: Hollow carbon spheres containing Fe3N nanocrystals (Fe3N/HCSs) are synthesized by ferrocene and ammonium chloride in high pressure argon at 500 °C. The structure, morphology and properties of the products are characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TG) and vibrating sample magnetometry (VSM). The hollow carbon spheres have diameters of 1-10 µm and shell thickness of hundreds of nanometers. The dimensions of the acicular Fe3N nanocrystals have diameters of ca. 100 nm and lengths of 600-800 nm. The weight percent of Fe3N nanocrystals in Fe3N/HCSs is about 37.8%. The saturation magnetization value of the hollow carbon spheres containing Fe3N nanocrystals is 10.61 emu/g.
1281